• Chinese Journal of Quantum Electronics
  • Vol. 31, Issue 6, 696 (2014)
Xin-yu LI*, Le WANG, He YANG, and Sheng-mei ZHAO
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3969/j.issn.1007-5461.2014.06.009 Cite this Article
    LI Xin-yu, WANG Le, YANG He, ZHAO Sheng-mei. High-order periodic diffraction correlation imaging scheme for reflective objects[J]. Chinese Journal of Quantum Electronics, 2014, 31(6): 696 Copy Citation Text show less
    References

    [1] Pittman T B, Shih Y H, Sergienko A V, et al. Experimental tests of Bell’s inequalities based on space-time and spin variables [J]. Phys. Rev. A, 1995, 51: 053495.

    [2] Bennink R S, Bentley S J, Boyd R W. “Two-photon” coincidence imaging with a classical source [J]. Phys. Rev. Lett., 2002, 89: 113601.

    [3] Ferri F, Magatti D, Gatti A, et al. High-resolution ghost image and ghost diffraction experiments with thermal light [J]. Phys. Rev. Lett., 2005, 94: 183601.

    [6] Zhang Y T, He C J, Li H G, et al. Novel ghost imaging method for a pure phase object [J]. Chin. Phys. Lett., 2008, 25: 072481.

    [8] Zhang D, Zhai Y H, Wu L A, et al. Correlated two-photon imaging with true thermal light [J]. Opt. Lett., 2005, 30: 182354.

    [9] Cai Y J, Zhu S Y. Ghost imaging with incoherent and partially coherent light radiation [J]. Phys. Rev. E, 2005, 71: 056607.

    [11] Scarcelli G, Berardi V, Shih Y H. Phase-conjugate mirror via two-photon thermal light imaging [J]. Appl. Phys. Lett., 2006, 88: 061106.

    [12] Liu H L, Shen Xia, et al. Fourier-transform ghost imaging with pure far-field correlated thermal light [J]. Phys. Rev. Lett., 2007, 76: 053808.

    [13] Shapiro J H. Computational ghost imaging [J]. Phys. Rev. A, 2008, 78: 061802.

    [14] He S B, Shen X, Wang H, et al. Ghost diffraction without a beam-splitter [J]. Appl. Phys. Lett., 2010, 96: 181108.

    [15] Li H, Chen Z P, Xiong J, et al. Periodic diffraction correlation imaging without a beam-splitter [J]. Opt. Expr., 2012, 20: 032956.

    [19] Bai Y F, Han S S. Ghost imaging with thermal light by third-order correlation [J]. Phys. Rev. A, 2007, 76: 043828.

    [20] Chen X H, Agafonov I N, Luo K H, et al. High-visibility, high-order lensless ghost imaging with thermal light [J]. Opt. Lett., 2010, 35: 1166.

    [21] Hardy N D, Shapiro J H. Reflective ghost imaging through turbulence [J]. Phys. Rev. A, 2011, 84: 063824.

    [22] Duan D Y, Xia Y J. Reflective ghost imaging with classical Gaussian-state light [J]. Chinese Opt. Lett., 2012, 10: 031102.

    [23] Mandel L, Wolf E. Optical Coherence and Quantum Optics [M]. United Kingdom: Cambridge University Press, 1995: 672-693.

    [25] Goodman J W. Introduction to Fourier Optics [M]. America:Roberts and Company Publishers, 2005: 12-27.

    [26] Erkmen B I, Shapiro J H. Signal-to-noise ratio of Gaussian-state ghost imaging [J]. Phy. Rev. A, 2009, 79: 023833.

    [27] Scarelli G, Bererdi V, Shih Y. Can two-photon correlatin of chaotic light be considered as correlation of intensity fluctuation [J]. Phy. Rev. Lett., 2006, 9 (6): 063602-063605.

    [28] Zhang E F, Dai H Y, et al. Signal-to-noise ratio of lensless ghost interference with thermal incoherent light [J]. Chin. Phys. B, 2011, 20: 024201.

    [29] Ferri F, Magatti D, Lugiato L A, et al. Differential ghost imaging [J]. Phys. Rev. Lett., 2010, 104: 253603.

    LI Xin-yu, WANG Le, YANG He, ZHAO Sheng-mei. High-order periodic diffraction correlation imaging scheme for reflective objects[J]. Chinese Journal of Quantum Electronics, 2014, 31(6): 696
    Download Citation