• Laser & Optoelectronics Progress
  • Vol. 62, Issue 2, 0237012 (2025)
Xinlei Wang1,2,*, Chenxu Liao1, Shuo Wang1, and Ruilin Xiao1
Author Affiliations
  • 1School of Electronic and Information Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, Jiangsu , China
  • 2School of Electronic Information Engineering, Wuxi University, Wuxi 214105, Jiangsu , China
  • show less
    DOI: 10.3788/LOP241236 Cite this Article Set citation alerts
    Xinlei Wang, Chenxu Liao, Shuo Wang, Ruilin Xiao. Lightweight Network for Real-Time Object Detection in Fisheye Cameras[J]. Laser & Optoelectronics Progress, 2025, 62(2): 0237012 Copy Citation Text show less
    References

    [1] Duan Z J, Li S B, Hu J J et al. Review of deep learning based object detection methods and their mainstream frameworks[J]. Laser & Optoelectronics Progress, 57, 120005(2020).

    [2] Redmon J, Divvala S, Girshick R et al. You only look once: unified, real-time object detection[C], 779-788(2016).

    [3] Liu W, Anguelov D, Erhan D et al. SSD: single shot MultiBox detector[M]. Computer vision-ECCV 2016, 9905, 21-37(2016).

    [4] Tan M X, Pang R M, Le Q V. EfficientDet: scalable and efficient object detection[C], 10778-10787(2020).

    [5] Ren S Q, He K M, Girshick R et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39, 1137-1149(2017).

    [6] Wei X, Wei Y, Lu X B. HD-YOLO: Using radius-aware loss function for head detection in top-view fisheye images[J]. Journal of Visual Communication and Image Representation, 90, 103715(2023).

    [7] Shen X J, Cheng M J, Xiao J J et al. Corner detection for fisheye checkerboard images based on iterative correction[J]. Laser & Optoelectronics Progress, 53, 091501(2016).

    [8] Li T W, Tong G J, Tang H Y et al. FisheyeDet: a self-study and contour-based object detector in fisheye images[J]. IEEE Access, 8, 71739-71751(2020).

    [9] Yang D G, Zhou J, Song T T et al. PGDS-YOLOv8s: an improved YOLOv8s model for object detection in fisheye images[J]. Applied Sciences, 14, 44(2023).

    [10] Howard A G, Zhu M L, Chen B et al. MobileNets: efficient convolutional neural networks for mobile vision applications[EB/OL]. http://arxiv.org/abs/1704.04861v1

    [11] Cheng R J, Yang Y, Li L W et al. Lightweight residual network based on depthwise separable convolution for hyperspectral image classification[J]. Acta Optica Sinica, 43, 1228010(2023).

    [12] Tan M X, Le Q V. EfficientNet: rethinking model scaling for convolutional neural networks[EB/OL], -11946. http://arxiv.org/abs/1905.11946v5

    [13] Guo Y, Ma M L, Li D L. Detection of surface defects in lightweight insulators using improved YOLOv5[J]. Laser & Optoelectronics Progress, 60, 2412007(2023).

    [14] Zhang L, Zhang Z, Shu W H et al. Convolutional layered pruning based on YOLOv3[J]. Computer Engineering and Applications, 57, 131-137(2021).

    [15] Li C Y, Yao J M, Lin Z X et al. Object detection method based on improved YOLO lightweight network[J]. Laser & Optoelectronics Progress, 57, 141003(2020).

    [16] Chen J, Mai H S, Luo L B et al. Effective feature fusion network in BIFPN for small object detection[C], 699-703(2021).

    [17] Zhang X, Liu C, Yang D G et al. RFAConv: innovating spatial attention and standard convolutional operation[EB/OL]. http://arxiv.org/abs/2304.03198v6

    [18] Lee J, Park S, Mo S et al. Layer-adaptive sparsity for the magnitude-based pruning[EB/OL]. https://arxiv.org/abs/2010.07611

    [19] Ouyang D L, He S, Zhang G Z et al. Efficient multi-scale attention module with cross-spatial learning[C](2023).

    [20] Chen J R, Kao S H, He H et al. Run, don’t walk: chasing higher FLOPS for faster neural networks[C], 12021-12031(2023).

    [21] Lin T Y, Dollár P, Girshick R et al. Feature pyramid networks for object detection[C], 936-944(2017).

    [22] Liu S, Qi L, Qin H F et al. Path aggregation network for instance segmentation[C](2018).

    [23] Lin T Y, Goyal P, Girshick R et al. Focal loss for dense object detection[C], 2999-3007(2017).

    [24] Gale T, Elsen E, Hooker S. The state of sparsity in deep neural networks[EB/OL]. http://arxiv.org/abs/1902.09574v1

    [25] Gochoo M, Otgonbold M E, Ganbold E et al. FishEye8K: a benchmark and dataset for fisheye camera object detection[C], 5305-5313(2023).

    [26] Yogamani S, Hughes C, Horgan J et al. WoodScape: a multi-task, multi-camera fisheye dataset for autonomous driving[C], 9307-9317(2019).

    [27] Yang L, Li L L, Xin X S et al. Large-scale person detection and localization using overhead fisheye cameras[C], 19904-19914(2023).

    [28] Du D W, Zhu P F, Wen L Y et al. VisDrone-DET2019: the vision meets drone object detection in image challenge results[C], 213-226(2019).