• Acta Optica Sinica
  • Vol. 36, Issue 3, 325001 (2016)
An Qian*, Hou Jin, Wang Wenzhen, Yang Chunyong, and Zhong Zhiyou
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/aos201636.0325001 Cite this Article Set citation alerts
    An Qian, Hou Jin, Wang Wenzhen, Yang Chunyong, Zhong Zhiyou. Symmetric Substructure Dual Gratings for Enhancement of Light Absorption in Amorphous Silicon Film Solar Cells[J]. Acta Optica Sinica, 2016, 36(3): 325001 Copy Citation Text show less
    References

    [1] Yu Xiaoming, Zhao Jing, Hou Guofu, et al.. Investigation of light trapping structure and performance in PIN-type and NIP-type thin film silicon solar cells[J]. Acta Phys Sin, 2013, 62(12): 120101.

    [2] Qin Feifei, Zhang Haiming, Wang Caixia, et al.. Design and simulation of anodic aluminum oxide nanograting double light trapping structure for thin film silicon solar cells[J]. Acta Phys Sin, 2014, 63(19): 198802.

    [3] Wu Fengbing, Zhang Dawei. The light trapping in solar cells based on periodic nano-structures gratings[J]. Laser Journal, 2010, 31(5): 15-17.

    [4] Shah A, Schade H, Vanecek M, et al.. Thin-film silicon solar cell technology[J]. Progress in Photovoltaics: Research and Applications, 2004, 12(2): 113-142.

    [5] Yu Z, Raman A, Fan S. Fundamental limit of nanophotonic light trapping in solar cells[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(41): 17491-17496.

    [6] Battaglia C, Hsu C M, S derstr m K, et al.. Light trapping in solar cells: can periodic beat random [J]. ACS Nano, 2012, 6(3): 2790-2797.

    [7] Polman A, Atwater H A. Photonic design principles for ultrahigh-efficiency photovoltaics[J]. Nature Materials, 2012, 11(3): 174-177.

    [8] Moulin E, Steltenpool M, Boccard M, et al.. 2-D periodic and random-on-periodic front textures for tandem thin-film silicon solar cells [J]. IEEE Journal of Photovoltaics, 2014, 4(5): 1177-1184.

    [9] Bittkau K, Hoffmann A, Carius R. Improvement of light trapping in thin-film silicon solar cells by combining periodic and random interfaces[J]. Canadian Journal of Physics, 2014, 92(7): 888-891.

    [10] Priolo F, Gregorkiewicz T, Galli M, et al.. Silicon nanostructures for photonics and photovoltaics[J]. Nat Nano, 2014, 9(1): 19-32.

    [11] Ma Jing, Lin Sile, Cheng Shuying. Application of scattered light model and guided mode resonant in structure design of thin film solar cells[J]. Acta Optica Sinica, 2014, 34(4): 0431002.

    [12] Zhang Chao, Zhang Qingmao, Guo Liang, et al.. Texturing process with 355 nm laser for amorphous silicon film solar cell[J]. Chinese J Lasers, 2013, 40(7): 0707004.

    [13] Kong Weijin, Cao Kaihua, You Chenglong, et al.. Optimization of wide spectrum anti-reflective grating for solar cell[J]. Acta Optica Sinica, 2013, 33(12): 1205001.

    [14] Heine C, Morf R H. Submicrometer gratings for solar energy applications[J]. Appl Opt, 1995, 34(14): 2476-2482.

    [15] Llopis F, Tobias I. The role of rear surface in thin silicon solar cells[J]. Solar Energy Materials and Solar Cells, 2005, 87(1): 481-492.

    [16] Llopis F, Tobías I. Texture profile and aspect ratio influence on the front reflectance of solar cells[J]. Journal of Applied Physics, 2006, 100(12): 124504.

    [17] Haase C, Stiebig H. Fundamental optical simulations of light trapping in microcrystalline silicon thin-film solar cells[C]. Photonics for Solar Energy Systems, Proc SPIE, 2006, 6197: 619705.

    [18] Sai H, Kanamori Y, Arafune K, et al.. Light trapping effect of submicron surface textures in crystalline Si solar cells[J]. Progress in Photovoltaics: Research and Applications, 2007, 15(5): 415-423.

    [19] Haase C, Stiebig H. Thin-film silicon solar cells with efficient periodic light trapping texture[J]. Appl Phys Lett, 2007, 91(6): 061116.

    [20] Mavrokefalos A, Han S E, Yerci S, et al.. Efficient light trapping in inverted nanopyramid thin crystalline silicon membranes for solar cell applications[J]. Nano Letters, 2012, 12(6): 2792-2796.

    [21] C ampa A, Krc J, Smole F, et al.. Potential of diffraction gratings for implementation as a metal back reflector in thin-film silicon solar cells[J]. Thin Solid Films, 2008, 516(20): 6963-6967.

    [22] Lee Y C, Huang C F, Chang J Y, et al.. Enhanced light trapping based on guided mode resonance effect for thin-film silicon solar cells with two filling-factor gratings[J]. Opt Express, 2008, 16(11): 7969-7975.

    [23] Park Y, Drouard E, Daif O E, et al.. Absorption enhancement using photonic crystals for silicon thin film solar cells[J]. Opt Express, 2009, 17(16): 14312-14321.

    [24] Wang P, Menon R. Simulation and analysis of the angular response of 1D dielectric nanophotonic light-trapping structures in thin-film photovoltaics[J]. Opt Express, 2012, 20(S4): A545-A553.

    [25] Schuster C S, Kowalczewski P, Martins E R, et al.. Dual gratings for enhanced light trapping in thin-film solar cells by a layer-transfer technique[J]. Opt Express, 2013, 21(S3): A433-A439.

    [26] Liu V, Fan S. S4: A free electromagnetic solver for layered periodic structures[J]. Computer Physics Communications, 2012, 183(10): 2233-2244.

    [27] Polyanskiy M. Refractive index database[J]. Refractiveindex, Info, 2014.

    [28] Fisker C, Pedersen T G. Opimization of imprintable nanostructured a-Si solar cells: FDTD study[J]. Opt Express, 2013, 21(102): A208- A220.

    [29] Khaleque T, Magnusson R. Light management through guided- mode resonances in thin- film silicon solar cells[J]. Journal of Nanophotonics, 2014, 8(1): 083995.

    An Qian, Hou Jin, Wang Wenzhen, Yang Chunyong, Zhong Zhiyou. Symmetric Substructure Dual Gratings for Enhancement of Light Absorption in Amorphous Silicon Film Solar Cells[J]. Acta Optica Sinica, 2016, 36(3): 325001
    Download Citation