• Laser & Optoelectronics Progress
  • Vol. 52, Issue 11, 112401 (2015)
Chen Jiajia*, Sheng Pengchi, Yang Junfeng, Chen Ming, and Chen Hui
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/lop52.112401 Cite this Article Set citation alerts
    Chen Jiajia, Sheng Pengchi, Yang Junfeng, Chen Ming, Chen Hui. Study on Slow Light of Surface Plasmon Waveguide with Low Loss[J]. Laser & Optoelectronics Progress, 2015, 52(11): 112401 Copy Citation Text show less
    References

    [1] William L Barnes, Alain Dereux, Thomas W Ebbesen. Surface plasmon sub- wavelength optics[J]. Nature, 2003, 424: 824-830.

    [2] Wang Jicheng, Liu Hongjiao, Cai Zengyan, et al.. Design of surface plasmon dichroic splitter with two metallic slits[J]. Laser & Optoelectronics Progress, 2014, 51(10): 102301.

    [3] Wang Guoxi, Lu Hua, Liu Xueming, et al.. Tunable multi-channel wavelength demultiplexer based on MIM plasmonic nanodisk resonators at telecommunication regime[J]. Opt Express, 2011, 19(4): 3513-3518.

    [4] Yun Binfeng, Hu Guohua, Cui Yiping. Resonant mode analysis of the nanoscale surface plasmon polariton waveguide filter with rectangle cavity[J]. Plasmonics, 2013, 8(2): 267-275.

    [5] Luo Xin, Zou Xihua, Wen Kunhua, et al.. Narrow-band filter of surface plasmon based on dual-section metal-insulatormetal structure[J]. Acta Optica Sinica, 2013, 33(11): 1123003.

    [6] Chen Xiaolong, Luo Yunhan, Xu Mengyun, et al.. Refractive index and temperature sensing based on surface plasmon resonance fabricated on a side-polished fiber[J]. Acta Optica Sinica, 2014, 34(2): 0206005.

    [7] L Chen, G P Wang, X Li, et al.. Broadband slow- light in graded- grating- loaded plasmonic waveguides at telecom frequencies[J]. Appl Phys B, 2011, 104(3): 653-657.

    [8] Gan Qiaoqiang, Fu Zhan, Ding Yujie, et al.. Ultrawide- bandwidth slow- light system based on THz plasmonic graded metallic grating structures[J]. Phys Rev Lett, 2008, 100(25-27): 256803.

    [9] L Wang, L L Wang, Y Zeng, et al.. Trapping of surface plasmon polaritons in a multiple- teeth- shaped waveguide at visible wavelengths[J]. Appl Phys B, 2011, 103(4): 883-887.

    [10] Gan Qiaoqiang, Filbert J Bartoli. Graded metallic gratings for ultrawideband surface wave trapping at THz frequencies [J]. IEEE J Sel Top Quantum Electron, 2011, 17(1): 102-109.

    [11] Xu Yun, Zhang Jing, Song Guofeng. Slow surface plasmons in plasmonic grating waveguide[J]. IEEE Photon Technol Lett, 2013, 25(1): 410-413.

    [12] Zhang Jing, Cai Likang, Bai Wenli, et al.. Flat surface plasmon polariton bands in Bragg grating waveguide for slow light [J]. J Lightwave Technol, 2010, 28(14): 2030-2036.

    [13] Li Chunlei, Qi Dawei, Xin Jiangbo, et al.. Metal-insulator-metal plasmonic waveguide for low-distortion slow light at telecom frequencies[J]. Journal of Modern Optics, 2014, 61(8): 627-630.

    [14] Zeng Chao, Cui Yudong. Low- distortion plasmonic slow- light system at telecommunication regime[J]. Opt Commun, 2013, 294(5): 372-376.

    [15] Zeng Chao, Cui Yudong. Rainbow trapping of surface plasmon polariton waves in metal-insulator-metal graded grating waveguide[J]. Opt Commun, 2013, 290(1): 188-191.

    [16] Li Chunlei, Zhang Xueru, Wang Yuxiao, et al.. Precise control of group velocity by pulsewidth in a plasmonic superlattice [J]. IEEE Photon Technol Lett, 2011, 23(17): 1243-1245.

    [17] Kang Zhiwen, Lin Weihua, Wang Guoping. Dual- channel broadband slow surface plasmon polaritons in metal gap waveguide superlattices[J]. J Opt Soc Am B, 2009, 26(10): 1944-1948.

    [18] Min Seok Jang, Harry Atwater. Plasmonic rainbow trapping structures for light localization and spectrum splitting[J]. Phys Rev Lett, 2011, 107: 207401.

    [19] Gan Qiaoqiang, Gao Yongkang, Kyle Wagner, et al.. Experimental verification of the rainbow trapping effect in adiabatic plasmonic gratings[J]. Advanced Materials, 2011, 108(13): 5169-5173.

    [20] Hua Gao, Claire Gu, Zheng Zhiyuan, et al.. Transmission forbiddance and absorption enhancement in a sub-wavelength metallic cross-slit[J]. Opt Commun, 2014, 320(6): 49-55.

    [21] Takasumi Tanabe, Masaya Notomi, Eiichi Kuramochi, et al.. Large pulse delay and small group velocity achieved using ultrahigh-Q photonic crystal nanocavities[J]. Opt Express, 2007, 15(12): 7826-7839.

    [22] Shen Yun, Wang Guoping. Gain- assisted time delay of plasmons in coupled metal ring resonator waveguides[J]. Opt Express, 2007, 17(15): 12807-12812.

    [23] Li Chunlei, Zhang Xueru, Wang Yuxiao, et al.. Slow surface plasmon polaritons with a large normalized delay bandwidth product in an ultracompact metal gap superlattice[J]. Opt Commun, 2012, 285(7): 1993-1996.

    CLP Journals

    [1] Wang Qiong, Shao Xiaozhen, Zhang Guanmao, Hu Nan. Transmission Characteristics of the Double-Layer Semi-Circular Dielectric-Loaded Surface Plasmon Polariton Waveguides[J]. Laser & Optoelectronics Progress, 2016, 53(6): 61302

    [2] Li Yong, Zhang Huifang, Fan Tianxin, He Ying, Wang Yan, Bai Lihua. Theoretical Analysis of Double Dielectric Loaded Graphene Surface Plasmon Polariton[J]. Acta Optica Sinica, 2016, 36(7): 724001

    Chen Jiajia, Sheng Pengchi, Yang Junfeng, Chen Ming, Chen Hui. Study on Slow Light of Surface Plasmon Waveguide with Low Loss[J]. Laser & Optoelectronics Progress, 2015, 52(11): 112401
    Download Citation