• Chinese Journal of Quantum Electronics
  • Vol. 34, Issue 2, 129 (2017)
Liang SHANG*, CHUHongling , Yuan WANG, SHIXuexin , Lingling LIU, and Yunzi ZHOU
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3969/j.issn.1007-5461. 2017.02.001 Cite this Article
    SHANG Liang, CHUHongling, WANG Yuan, SHIXuexin, LIU Lingling, ZHOU Yunzi. Research progress of hollow-core Bragg fibers and their applications in sensing[J]. Chinese Journal of Quantum Electronics, 2017, 34(2): 129 Copy Citation Text show less
    References

    [1] Harrington J A. A review of IR transmitting hollow waveguides[J]. Fiber and Integr. Opt., 2000, 19: 11-227.

    [2] Hodgkinson J, Tatam R P. Optical gas sensing: A review[J]. Meas. Sci. Technol., 2013, 24: 012004.

    [3] Yeh P, Yariv A, Marom E. Theory of Bragg fiber[J]. J. Opt. Soc. Am., 1978, 68(9): 1196-1201.

    [4] Fink Y, Winn J N, Fan S, et al. A dielectric omnidirectional reflector[J]. Science, 1998, 282: 1679-1682.

    [5] Temelkuran B, Hart S D, Benoit G, et al. Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission[J]. Nature, 2002, 420: 650-653.

    [6] Fink Y, Ripin D J, Fan S, et al. Guiding optical light in air using an all-dielectric structure[J]. J. Lightw. Technol., 1999, 17: 2039-2041.

    [7] Russell P St J. Photonic-crystal fibers[J]. J. Lightw. Technol., 2006, 24: 4729-4749.

    [8] Gauvreau B, Guo N, Schicker K, et al. Color-changing and color-tunable photonic bandgap fiber textiles[J]. Opt. Expr., 2008, 1(20): 15677-15693.

    [9] Skorobogatiy M, Dupuis A. Ferroelectric all-polymer hollow Bragg fibers for terahertz guidance[J]. Appl. Phys. Lett., 2007, 90: 113514.

    [10] Yu R, Zhang B, Zhang Y, et al. Proposal for ultralow loss hollow-core plastic Bragg fiber with cobweb-structured cladding for terahertz waveguiding[J]. IEEE Photon. Technol. Lett., 2007, 19(12): 910-912.

    [11] Kuriki K, Shapira O, Hart S D, et al. Hollow multilayer photonic bandgap fibers for NIR applications[J]. Opt. Expr., 2004, 12(8): 1510-1517.

    [12] Ouyang G, Xu Y, Yariv A. Theoretical study on dispersion compensation in air-core Bragg fibers[J]. Opt. Expr., 2002, 10(17): 899-908.

    [13] Engeness T D, Ibanescu M, Johnson S G, et al. Dispersion tailoring and compensation by modal interactions in omniguide fibres[J]. Opt. Expr., 2003, 11(10): 1175-1196.

    [14] Lin C X, Zhang W, Huang Y D, et al. Defect Bragg fiber with low loss for Broadband and zero dispersion slow light[J]. J. Lightw. Technol., 2007, 25(12): 3776-3783.

    [15] Shapira O, Kuriki K, Orf N D, et al. Surface-emitting fiber lasers[J]. Opt. Expr., 2006, 14(9): 3929-3935.

    [16] Skorobogatiy M, Saitoh K, Koshiba M. Resonant directional coupling of hollow Bragg fiber[J]. Opt. Lett., 2004, 29(18): 2112-2114.

    [17] Benoit G, Kuriki K, Viens J, et al. Dynamic all-optical tuning of transverse resonant cavity modes in photonic bandgap fibers[J]. Opt. Lett., 2005, 30(13): 1620-1622.

    [18] Chen D, Yang T, Wu J, et al. Band-rejection fiber and fiber sensor based on a Bragg fiber of transversal resonant structure[J]. Opt. Expr., 2008, 1(21): 16489-16495.

    [19] Charlton C, Temelkuran B, Dellemann G, et al. Midinfrared sensors meet nanotechnology: Trace gas sensing with quantum cascade lasers inside photonic band-gap hollow waveguides[J]. Appl. Phys. Lett., 2005, 86: 194102.

    [22] Stolyarov A M, Gumennik A, McDaniel W, et al. Enhanced chemiluminescent detection scheme for trace vapor sensing in pneumatically-tuned hollow core photonic bandgap fibers[J]. Opt. Expr., 2012, 20(11): 12407-12415.

    [23] Rowland K J, Afshar V S, Stolyarov A, et al. Bragg waveguides with low-index liquid cores[J]. Opt. Expr., 2012, 20(1): 48-62.

    [24] Qu H, Skorobogatiy M. Liquid-core low-refractive-index-contrast Bragg fiber sensor[J]. Appl. Phys. Lett., 2011, 98: 201114.

    [25] Qu H, Ung B, Roze M, et al. All photonic bandgap fiber spectroscopic system for detection of refractive index changes in aqueous analytes[J]. Sens. Actuators B, 2012, 161: 235-243.

    [26] Qu H, Skorobogatiy M. Resonant bio- and chemical sensors using low-refractive-index-contrast liquid-core Bragg fibers[J]. Sens. Actuators B, 2012, 161: 261-268.

    [27] Passaro D, Foroni M,et al. All-silica hollow-core microstructured Bragg fibers for biosensor application[J]. IEEE Sens. J., 2008, 8(7): 1280-1286.

    [28] Ozturk F E, Yidirim A, Kanik M, et al. Photonic bandgap narrowing in conical hollow core Bragg fibers[J]. Appl. Phys. Lett., 2014, 105: 071102.

    [29] Johnson S G, Ibanescu M, Skorobogatiy M, et al. Low-loss asymptotically single-mode propagation in large-core omniguide fibers[J]. Opt. Expr., 2001, 9(13): 748-779.

    [30] Skorobogatiy M. Efficient antiguiding of TE and TM polarizations in low-index core waveguides without the need for an omnidirectional reflector[J]. Opt. Lett., 2005, 30(22): 2991-2993.

    [31] Pone E, Dubois C, Guo N, et al. Drawing of the hollow all-polymer Bragg fibers[J]. Opt. Expr., 2006, 14(13): 5838-5852.

    [32] Gao Y, Guo N, Gauvreau B, et al. Consecutive solvent evaporation and co-rolling techniques for polymer multilayer hollow fiber preform fabrication[J]. J. Mater. Res., 2006, 21(9): 2246-2254.

    [33] Yang L, Li J, Wu Y, et al. Mode classification and loss mechanism in air-core Bragg fibers[J]. Opt. Commun., 2012, 285: 3066-3074.

    [34] Ibanescu M, Johnson S G, Solja M, et al. Analysis of mode structure in hollow dielectric waveguide fibers[J]. Phys. Rev. E, 2003, 67: 046608.

    [35] Shapira O, Abouraddy A F, Joannopoulos J D, et al. Complete modal decomposition for optical waveguides[J]. Phys. Rev. Lett., 2005, 94(14): 143902.

    [36] Ruff Z, Shemuly D, Peng X, et al. Polymer-composite fibers for transmitting high peak power pulses at 1.55 microns[J]. Opt. Expr., 2010, 18(15): 15697-15703.

    [38] Xu G Y, Zhang W, Huang Y D, et al. Loss characteristics of single-HE11-mode Bragg fiber[J]. J. Lightw. Technol., 2007, 25(1): 359-366.

    [39] Zhang Y, Robertson I D. Single-mode terahertz Bragg fiber design using a modal filtering approach[J]. IEEE Trans. Microw. Theory Tech., 2010, 58(7): 1985-1992.

    [40] Shang L, Huang Z X, Liao Y L. Comparative study of guided modes in hollow core Bragg fibers with binary and ternary photonic bandgap claddings[J]. J. Opt. Soc. Am. B, 2015, 32(6): 1155-1164.

    [41] Katagiri T, Matsuura Y, et al. Metal-covered photonic bandgap multilayer for infrared hollow waveguides[J]. Appl. Opt., 2002, 41(36): 7603-7606.

    [42] Bayindir M, Abouraddy A F, Shapira O, et al. Kilometer-long ordered nanophotonic devices by preform-to-fiber fabrication[J]. IEEE J. Sel. Top. Quant. Electron., 2006, 12(6): 1202-1213.

    [43] Dupuis A, Stoeffler K, Ung B, et al. Transmission measurements of hollow-core THz Bragg fibers[J]. J. Opt. Soc. Am. B, 2011, 28(4): 896-907.

    [44] Gibson D J, Harrington J A. Extrusion of hollow waveguide preforms with a one-dimensional photonic bandgap structure[J]. J Appl. Phys., 2004, 95(8): 3895-3900.

    [45] Vienne G, Xu Y, Jakobsen C, et al. Ultra-large bandwidth hollow-core guiding in all-silica Bragg fibers with nano-supports[J]. Opt. Expr., 2004, 12(15): 3500-3508.

    [46] Foroni M, Passaro D, Poli F, et al. Guiding properties of silica/air hollow-core Bragg fibers[J]. J. Lightw. Technol., 2008, 2(13): 1877-1884.

    [47] Argyros A, Eijkelenborg M A, Large M C J, et al. Hollow-core microstructured polymer optical fiber[J]. Opt. Lett., 2006, 31(2): 172-174.

    [49] Yang X, Shi C, Wheeler D, et al. High-sensitivity molecular sensing using hollow-core photonic crystal fiber and surface-enhanced Raman scattering[J]. J. Opt. Soc. Am. A, 2010, 27(5): 977-984.

    [50] Cubillas A M, Silvalopez M, Lazaro J M, et al. Methane detection at 1670 nm band using a hollow-core photonic bandgap fiber and a multiline algorithm[J]. Opt. Expr., 2008, 15(26): 17570-17576.

    [51] Young C, Hartwig S, Lambrecht A, et al. Optimizing gas sensors based on quantum cascade lasers and photonic bandgap hollow waveguides[C]. IEEE Sensors, 2007: 1345-1348.

    [52] Yildirim A, Vural M, Yaman M, et al. Bioinspired optoelectronic nose with nanostructured wavelength-scalable hollow-core infrared fibers[J]. Advanced Materials, 2011, 23(10): 1263-1267.

    [53] Shi L, Zhang W, Jin J, et al. Multi-wavelength transmission of hollow-core Bragg fiber with modified binary one-dimensional photonic crystal cladding[J]. J. Lightw. Technol., 2012, 30(10): 1492-1498.

    [54] Shang L, Zhang L C. Enlargement of omnidirectional bandgap in a hollow core Bragg fiber with linealy-chirped multilayered cladding for mid-infrared multicomponent trace-gas detection[J]. Opt. Commun., 2013, 301-302: 78-83.

    [55] Shang L, Yang X Q, Xia Y J, et al. Hollow core Bragg fibers with a heterostructured cladding based on ternary one-dimensional photonic crystal for mid-infrared broadband and low-loss transmission[J]. J. Lightw. Technol., 2014, 32(9): 1717-1725.

    [56] Sun J, Chan C C. Photonic bandgap fiber for refractive index measurement[J]. Sens. Actuators B, 2007, 128: 46-50.

    [57] Rowland K J, Afshar V S, Stolyarov A, et al. Spectral properties of liquid-core Bragg fibers[C]. CLEO, 2009, CThE2.

    [59] Gauvreau B, Hassani A, Fehri M F, et al. Photonic bandgap fiber-based surface plasmon resonance sensors[J]. Opt. Expr., 2007, 15(18): 11413-11426.

    [60] Monti T, Gradoni G. Hollow-core coaxial fiber sensor for biophotonic detection[J]. IEEE J. Sel. Top. Quant. Electron., 2014, 20(2): 6900409.

    SHANG Liang, CHUHongling, WANG Yuan, SHIXuexin, LIU Lingling, ZHOU Yunzi. Research progress of hollow-core Bragg fibers and their applications in sensing[J]. Chinese Journal of Quantum Electronics, 2017, 34(2): 129
    Download Citation