• Chinese Journal of Lasers
  • Vol. 48, Issue 8, 0802021 (2021)
Xiaoying Ren1、2、3、4, Jianlei Cui1、2、*, Yang Lu3、4, and Xuesong Mei1、2
Author Affiliations
  • 1State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China
  • 2Shaanxi Key Laboratory of Intelligent Robots, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
  • 3Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, 999077, China
  • 4Nanomanufacturing Laboratory (NML), City University of Hong Kong Shenzhen Research Institute, Shenzhen, Guangdong 518057, China
  • show less
    DOI: 10.3788/CJL202148.0802021 Cite this Article Set citation alerts
    Xiaoying Ren, Jianlei Cui, Yang Lu, Xuesong Mei. Research Progress on Electrical/Mechanical Properties of Interconnection Structures Based on Nanowelding[J]. Chinese Journal of Lasers, 2021, 48(8): 0802021 Copy Citation Text show less
    References

    [1] Xiang D, Wang X L, Jia C C et al. Molecular-scale electronics: from concept to function[J]. Chemical Reviews, 116, 4318-4440(2016). http://pubs.acs.org/doi/10.1021/acs.chemrev.5b00680

    [2] Svensson J, Tarakanov Y, Lee D S et al. A carbon nanotube gated carbon nanotube transistor with 5 ps gate delay[J]. Nanotechnology, 19, 325201(2008). http://www.ncbi.nlm.nih.gov/pubmed/21828807?systemmessage=wiley+online+library+will+be+disrupted+24+march+from+10-14+gmt+(06-10+edt)+for+essential+maintenance

    [3] Xiao M, Zheng S, Shen D Z et al. Laser-induced joining of nanoscale materials: processing, properties, and applications[J]. Nano Today, 35, 100959(2020). http://www.sciencedirect.com/science/article/pii/S1748013220301286

    [4] Herrmann L O, Valev V K, Tserkezis C et al. Threading plasmonic nanoparticle strings with light[J]. Nature Communications, 5, 4568(2014). http://www.ncbi.nlm.nih.gov/pubmed/25065385

    [5] Oh Y S, Choi H, Lee J et al. Temperature-controlled direct imprinting of Ag ionic ink: flexible metal grid transparent conductors with enhanced electromechanical durability[J]. Scientific Reports, 7, 11220(2017). http://www.ncbi.nlm.nih.gov/pubmed/28894221

    [6] Ferguson G S, Chaudhury M K, Sigal G B et al. Contact adhesion of thin gold films on elastomeric supports:cold welding under ambient conditions[J]. Science, 253, 776-778(1991).

    [7] Lu Y, Huang J Y, Wang C et al. Cold welding of ultrathin gold nanowires[J]. Nature Nanotechnology, 5, 218-224(2010). http://www.nature.com/articles/nnano.2010.4

    [8] Cha S H, Park Y, Han J W et al. Cold welding of gold nanoparticles on mica substrate:self-adjustment and enhanced diffusion[J]. Scientific Reports, 6, 32951(2016). http://europepmc.org/articles/PMC5011739/

    [9] Peng P, Guo W, Zhu Y et al. Nanoscale wire bonding of individual Ag nanowires on Au substrate at room temperature[J]. Nano-Micro Letters, 9, 1-6(2017).

    [10] Nautiyal P, Embrey L, Boesl B et al. Multi-scale mechanics and electrical transport in a free-standing 3D architecture of graphene and carbon nanotubes fabricated by pressure assisted welding[J]. Carbon, 122, 298-306(2017).

    [11] Langley D P, Lagrange M, Giusti G et al. Metallic nanowire networks: effects of thermal annealing on electrical resistance[J]. Nanoscale, 6, 13535-13543(2014).

    [12] Song T B, Chen Y, Chung C H et al. Nanoscalejoule heating and electromigration enhanced ripening of silver nanowire contacts[J]. ACS Nano, 8, 2804-2811(2014). http://pubs.acs.org/doi/10.1021/nn4065567

    [13] Lee S J, Lee Y B, Lim Y R et al. High energy electron beam stimulated nanowelding of silver nanowire networks encapsulated with graphene for flexible and transparent electrodes[J]. Scientific Reports, 9, 1-8(2019). http://www.nature.com/articles/s41598-019-45887-5?utm_source=other&utm_medium=other&utm_content=null

    [14] Xu S, Tian M, Wang J et al. Nanometer-scale modification and welding of silicon and metallic nanowires with a high-intensity electron beam[J]. Small, 1, 1221-1229(2005).

    [15] Wang Y G, Wang T H, Lin X W et al. Ohmic contact junction of carbon nanotubes fabricated by in situ electron beam deposition[J]. Nanotechnology, 17, 6011-6015(2006).

    [16] Garnett E C, Cai W, Cha J J et al. Self-limited plasmonic welding of silver nanowire junctions[J]. Nature Materials, 11, 241-249(2012). http://www.nature.com/nmat/journal/v11/n3/abs/nmat3238.html?foxtrotcallback=true

    [17] Lin L, Liu L, Peng P et al. In situ nanojoining of Y-and T-shaped silver nanowires structures using femtosecond laser radiation[J]. Nanotechnology, 27, 125201(2016). http://www.ncbi.nlm.nih.gov/pubmed/26891481

    [18] Kim S J, Jang D J. Laser-induced nanowelding of gold nanoparticles[J]. Applied Physics Letters, 86, 033112(2005). http://scitation.aip.org/content/aip/journal/apl/86/3/10.1063/1.1856139

    [19] Hu A, Peng P, Alarifi H et al. Femtosecond laser welded nanostructures and plasmonic devices[J]. Journal of Laser Applications, 24, 042001(2012). http://scitation.aip.org/content/lia/journal/jla/24/4/10.2351/1.3695174

    [20] Rahimi R, Ochoa M, Ziaie B. Direct laser writing of porous-carbon/silver nanocomposite for flexible electronics[J]. ACS Applied Materials & Interfaces, 8, 16907-16913(2016).

    [21] Kim I, Woo K, Zhong Z Y et al. Selective light-induced patterning of carbon nanotube/silver nanoparticle composite to produce extremely flexible conductive electrodes[J]. ACS Applied Materials & Interfaces, 9, 6163-6170(2017). http://www.ncbi.nlm.nih.gov/pubmed/28146354

    [22] Yu Y C, Deng Y B, Al Hasan M A et al. Femtosecond laser-induced non-thermal welding for a single Cu nanowire glucose sensor[J]. Nanoscale Advances, 2, 1195-1205(2020). http://pubs.rsc.org/en/content/articlehtml/2020/na/c9na00740g

    [23] Xing S L, Lin L C, Zou G S et al. Two-photon absorption induced nanowelding for assembling ZnO nanowires with enhanced photoelectrical properties[J]. Applied Physics Letters, 115, 103101(2019). http://www.researchgate.net/publication/335590678_Two-photon_absorption_induced_nanowelding_for_assembling_ZnO_nanowires_with_enhanced_photoelectrical_properties

    [24] Ha J, Lee B J, Hwang D J et al. Femtosecond laser nanowelding of silver nanowires for transparent conductive electrodes[J]. RSC Advances, 6, 86232-86239(2016).

    [25] Dai S W, Li Q, Liu G P et al. Laser-induced single point nanowelding of silver nanowires[J]. Applied Physics Letters, 108, 121103(2016). http://scitation.aip.org/content/aip/journal/apl/108/12/10.1063/1.4944699

    [26] Davami K, Mortazavi B, Ghassemi H M et al. A computational and experimental investigation of the mechanical properties of single ZnTe nanowires[J]. Nanoscale, 4, 897-903(2012).

    [27] Gaynor W, Burkhard G F, McGehee M D et al. Smooth nanowire/polymer composite transparent electrodes[J]. Advanced Materials, 23, 2905-2910(2011).

    [28] Huang H, Liu L, Peng P et al. Controlled joining of Ag nanoparticles with femtosecond laser radiation[J]. Journal of Applied Physics, 112, 123519(2012). http://scitation.aip.org/content/aip/journal/jap/112/12/10.1063/1.4770476

    [29] Pitarke J M, Silkin V M, Chulkov E V et al. Theory of surface plasmons and surface-plasmon polaritons[J]. Reports on Progress in Physics, 70, 1-87(2007).

    [30] Huang H, Sivayoganathan M, Duley W W et al. Efficient localized heating of silver nanoparticles by low-fluence femtosecond laser pulses[J]. Applied Surface Science, 331, 392-398(2015). http://www.sciencedirect.com/science/article/pii/S0169433215001105

    [31] Min C J, Zhang Y Q, Zhang L C et al. Plasmonic hybridization induced trapping and manipulation of metallic nano-objects[C]. // Optoelectronic Devices and Integration. Washington, D. C.: Optical Society of America, OW2B, 3(2015).

    [32] Nedialkov N N, Atanasov P A, Breitling D et al. Ablation of metals by ultrashort laser pulses[J]. Proceedings of SPIE, 5830, 80-84(2005).

    [33] Zhao P, Zhang Y, Tang S et al. Effect of piezoresistive behavior on electron emission from individual silicon carbide nanowire[J]. Nanomaterials, 9, E981(2019). http://www.ncbi.nlm.nih.gov/pubmed/31284558

    [34] Wang Q L, Liang X, Liu B H et al. Thermal conductivity of V2O5 nanowires and their contact thermal conductance[J]. Nanoscale, 12, 1138-1143(2020). http://pubs.rsc.org/en/content/articlelanding/2020/nr/c9nr08803b/unauth

    [35] Espinosa H D, Bernal R A, Filleter T. In situ TEM electromechanical testing of nanowires and nanotubes[J]. Small, 8, 3233-3252(2012). http://onlinelibrary.wiley.com/doi/10.1002/smll.201200342

    [36] Cui J L, Ren X Y, Mei H H et al. Molecular dynamics simulation study on the interfacial contact behavior between single-walled carbon nanotubes and nanowires[J]. Applied Surface Science, 512, 145696(2020). http://www.researchgate.net/publication/339092618_Molecular_dynamics_simulation_study_on_the_interfacial_contact_behavior_between_single-walled_carbon_nanotubes_and_nanowires

    [37] Cui J L, Theogene B, Wang X W et al. Molecular dynamics study of nanojoining between axially positioned Ag nanowires[J]. Applied Surface Science, 378, 57-62(2016).

    [38] Wong E W, Sheehan P E, Lieber C M. Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes[J]. Science, 277, 1971-1975(1997). http://jmicro.oxfordjournals.org/cgi/ijlink?linkType=ABST&journalCode=sci&resid=277/5334/1971

    [39] Tao X Y, Li X D. Catalyst-free synthesis, structural, and mechanical characterization of twinned Mg2B2O5 nanowires[J]. Nano Letters, 8, 505-510(2008).

    [40] Stan G, Krylyuk S, Davydov A V et al. Compressive stress effect on the radial elastic modulus of oxidized Si nanowires[J]. Nano Letters, 10, 2031-2037(2010). http://pubs.acs.org/doi/pdf/10.1021/nl100062n

    [41] Chen C Q, Zhu J. Bending strength and flexibility of ZnO nanowires[J]. Applied Physics Letters, 90, 043105(2007). http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=4827833

    [42] Palaci I, Fedrigo S, Brune H et al. Radial elasticity of multiwalled carbon nanotubes[J]. Physical Review Letters, 94, 175502(2005).

    [43] Lin C H, Ni H, Wang X et al. In situ nanomechanical characterization of single-crystalline boron nanowires by buckling[J]. Small, 6, 927-931(2010). http://onlinelibrary.wiley.com/doi/full/10.1002/smll.200902087

    [44] Haque M A, Espinosa H D, Lee H J. MEMS for in situ testing—handling, actuation, loading, and displacement measurements[J]. MRS Bulletin, 35, 375-381(2010). http://jmicro.oxfordjournals.org/external-ref?access_num=10.1557/mrs2010.570&link_type=DOI

    [45] Xu F, Qin Q Q, Mishra A et al. Mechanical properties of ZnO nanowires under different loading modes[J]. Nano Research, 3, 271-280(2010). http://link.springer.com/article/10.1007/s12274-010-1030-4

    [46] Bernal R A, Aghaei A, Lee S et al. Intrinsic bauschinger effect and recoverable plasticity in pentatwinned silver nanowires tested in tension[J]. Nano Letters, 15, 139-146(2015). http://europepmc.org/abstract/med/25279701

    [47] Chen Y J, Liao X Z. Mechanical behaviors of semiconductor nanowires[J]. Semiconductors and Semimetals, 94, 109-158(2016).

    [48] Guo H, Chen K, Oh Y et al. Mechanics and dynamics of the strain-induced M1-M2 structural phase transition in individual VO2 nanowires[J]. Nano Letters, 11, 3207-3213(2011). http://pubs.acs.org/doi/abs/10.1021/nl201460v

    [49] Wu C D, Fang T H, Wu C C. Size effect on cold-welding of gold nanowires investigated using molecular dynamics simulations[J]. Applied Physics A, 122, 218(2016).

    [50] Zhou H J, Wu W P, Wu R N et al. Effects of various conditions in cold-welding of copper nanowires: a molecular dynamics study[J]. Journal of Applied Physics, 122, 204303(2017). http://adsabs.harvard.edu/abs/2017JAP...122t4303Z

    [51] Luan S Y, Yu S T, Gui C Q et al. Atomic-scale structural evolution and welding deformations of laser welded joints in Ag nanowire connectors on homogeneous substrates[J]. Japanese Journal of Applied Physics, 59, 115002(2020).

    [52] Ding S, Tian Y H, Jiang Z et al. Molecular dynamics simulation of joining process of Ag-Au nanowires and mechanical properties of the hybrid nanojoint[J]. AIP Advances, 5, 057120(2015).

    [53] Wu C D, Fang T H, Wu C C. Atomistic simulations of nanowelding of single-crystal and amorphous gold nanowires[J]. Journal of Applied Physics, 117, 014307(2015). http://scitation.aip.org/content/aip/journal/jap/117/1/10.1063/1.4905350

    [54] Cui J L, Yang L J, Zhou L et al. Nanoscale soldering of axially positioned single-walled carbon nanotubes: a molecular dynamics simulation study[J]. ACS Applied Materials & Interfaces, 6, 2044-2050(2014). http://pubs.acs.org/doi/10.1021/am405114n

    [55] Cui J L, Yang L J, Wang Y. Molecular dynamics study of the positioned single-walled carbon nanotubes with T-, X-, Y- junction during nanoscale soldering[J]. Applied Surface Science, 284, 392-396(2013).

    [56] Yang H B, Lu J S, Ghosh P et al. Plasmonic-enhanced targeted nanohealing of metallic nanostructures[J]. Applied Physics Letters, 112, 071108(2018).

    [57] Ghosh P, Lu J S, Luo H et al. Constructing metal arch nanobridges utilizing a photothermal-induced nanobonding technique[J]. Advanced Electronic Materials, 5, 1800807(2019). http://onlinelibrary.wiley.com/doi/full/10.1002/aelm.201800807

    [58] Cihan E, Störmer H, Leiste H et al. Low friction of metallic multilayers by formation of a shear-induced alloy[J]. Scientific Reports, 9, 9480(2019).

    [59] Ghosh P, Lu J S, Chen Z Y et al. Photothermal-induced nanowelding of metal-semiconductor heterojunction in integrated nanowire units[J]. Advanced Electronic Materials, 4, 1700614(2018).

    [60] Lin L C, Zou G S, Liu L et al. Plasmonic engineering of metal-oxide nanowire heterojunctions in integrated nanowire rectification units[J]. Applied Physics Letters, 108, 203107(2016). http://scitation.aip.org/content/aip/journal/apl/108/20/10.1063/1.4950963

    [61] Xing S L, Lin L C, Huo J P et al. Plasmon-induced heterointerface thinning for Schottky barrier modification of core/shell SiC/SiO2 nanowires[J]. ACS Applied Materials & Interfaces, 11, 9326-9332(2019). http://www.researchgate.net/publication/331079544_Plasmon-Induced_Heterointerface_Thinning_for_Schottky_Barrier_Modification_of_CoreShell_SiCSiO2_Nanowires

    [62] Xiao M, Lin L, Xing S et al. Nanojoining and tailoring of current-voltage characteristics of metal-P type semiconductor nanowire heterojunction by femtosecond laser irradiation[J]. Journal of Applied Physics, 127, 184901(2020). http://www.researchgate.net/publication/341305139_Nanojoining_and_tailoring_of_current-voltage_characteristics_of_metal-P_type_semiconductor_nanowire_heterojunction_by_femtosecond_laser_irradiation/download

    [63] Keramatnejad K, Zhou Y S, Li D W et al. Laser-assisted nanowelding of graphene to metals: an optical approach toward ultralow contact resistance[J]. Advanced Materials Interfaces, 4, 1700294(2017). http://onlinelibrary.wiley.com/doi/10.1002/admi.201700294

    [64] Cui J L, Cheng Y, Zhang J W et al. Femtosecond laser irradiation of carbon nanotubes to metal electrodes[J]. Applied Sciences, 9, 476(2019).

    [65] Zhao Y Y, Zheng M L, Dong X Z et al. Tailored silver grid as transparent electrodes directly written by femtosecond laser[J]. Applied Physics Letters, 108, 221104(2016). http://scitation.aip.org/content/aip/journal/apl/108/22/10.1063/1.4952591

    [66] Hong S, Yeo J, Kim G et al. Nonvacuum, maskless fabrication of a flexible metal grid transparent conductor by low-temperature selective laser sintering of nanoparticle ink[J]. ACS Nano, 7, 5024-5031(2013). http://www.ncbi.nlm.nih.gov/pubmed/23731244

    [67] Zhong Z Y, Lee H, Kang D et al. Continuous patterning of copper nanowire-based transparent conducting electrodes for use in flexible electronic applications[J]. ACS Nano, 10, 7847-7854(2016).

    [68] Zhong Z Y, Woo K, Kim I et al. Roll-to-roll-compatible, flexible, transparent electrodes based on self-nanoembedded Cu nanowires using intense pulsed light irradiation[J]. Nanoscale, 8, 8995-9003(2016). http://www.ncbi.nlm.nih.gov/pubmed/27074548

    [69] Song C H, Han C J, Ju B K et al. Photoenhanced patterning of metal nanowire networks for fabrication of ultraflexible transparent devices[J]. ACS Applied Materials & Interfaces, 8, 480-489(2016). http://europepmc.org/abstract/MED/26690092

    [70] Rahman M T, Cheng C Y, Karagoz B et al. High performance flexible temperature sensors via nanoparticle printing[J]. ACS Applied Nano Materials, 2, 3280-3291(2019). http://pubs.acs.org/doi/10.1021/acsanm.9b00628

    [71] Han S, Hong S, Ham J et al. Fast plasmonic laser nanowelding for a Cu-nanowire percolation network for flexible transparent conductors and stretchable electronics[J]. Advanced Materials, 26, 5808-5814(2014).

    [72] Lee J, Lee P, Lee H et al. Very long Ag nanowire synthesis and its application in a highly transparent, conductive and flexible metal electrode touch panel[J]. Nanoscale, 4, 6408-6414(2012).

    [73] Park J H, Hwang G T, Kim S et al. Flash-induced self-limited plasmonic welding of silver nanowire network for transparent flexible energy harvester[J]. Advanced Materials, 29, 1603473(2017). http://onlinelibrary.wiley.com/doi/10.1002/adma.201770029/pdf

    [74] Kwon J, Cho H, Eom H et al. Low-temperature oxidation-free selective laser sintering of Cu nanoparticle paste on a polymer substrate for the flexible touch panel applications[J]. ACS Applied Materials & Interfaces, 8, 11575-11582(2016).

    [75] Wang H M, Wang H M, Wang Y L et al. Laser writing of Janus graphene/kevlar textile for intelligent protective clothing[J]. ACS Nano, 14, 3219-3226(2020). http://pubs.acs.org/doi/full/10.1021/acsnano.9b08638

    [76] Chen C X, Lu Y, Kong E S et al. Nanowelded carbon-nanotube-based solar microcells[J]. Small, 4, 1313-1318(2008). http://onlinelibrary.wiley.com/doi/10.1002/smll.200701309/abstract

    [77] Chen C X, Yan L J, Kong E S W et al. Ultrasonic nanowelding of carbon nanotubes to metal electrodes[J]. Nanotechnology, 17, 2192-2197(2006). http://iopscience.iop.org/0957-4484/18/25/259001

    [78] Tark H J, Kim D, Suk Kim J et al. Self-passivation of transparent single-walled carbon nanotube films on plastic substrates by microwave-induced rapid nanowelding[J]. Applied Physics Letters, 100, 163120(2012). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6188959

    [79] In J B, Kwon H J, Yoo J H et al. Laser welding of vertically aligned carbon nanotube arrays on polymer workpieces[J]. Carbon, 115, 688-693(2017).

    [80] Gong X J, Zhang H, Sun Z H et al. A viable method to enhance the electrical conductivity of CNT bundles: direct in situ TEM evaluation[J]. Nanoscale, 12, 13095-13102(2020). http://pubs.rsc.org/en/content/articlelanding/2020/nr/d0nr01459a

    [81] Liu Z, Yuan Y P, Shang Y T et al. Structural changes and electrical properties of nanowelded multiwalled carbon nanotube junctions[J]. Applied Optics, 57, 7435-7439(2018).

    [82] Mei H H, Cheng Y. Research progress of electrical properties based on carbon nanotubes: interconnection[J]. Ferroelectrics, 564, 1-18(2020).

    [83] Lin L C, Liu L, Musselman K et al. Plasmonic-radiation-enhanced metal oxide nanowire heterojunctions for controllable multilevel memory[J]. Advanced Functional Materials, 26, 5979-5986(2016). http://dx.doi.org/10.1002/adfm.201601143

    [84] Shimogaki T, Ishida Y, Okazaki K et al. Laser nano-soldering of ZnO nanowires and GaN thin film for fabrication of hetero p-n junction[M]. //ZnO Nanocrystals and Allied Materials. New Delhi: Springer India, 39-47(2013).

    [85] Zhao B, Wang Y F, Liu C et al. Ultrasonic nanowelding of SiC microparticles on Al surface[J]. Applied Surface Science, 258, 5786-5789(2012).

    [86] Banfield J F. Aggregation-based crystal growth and microstructure development in natural iron oxyhydroxide biomineralization products[J]. Science, 289, 751-754(2000). http://onlinelibrary.wiley.com/doi/10.1002/elps.200800499/citedby

    [87] Karki K, Epstein E, Cho J H et al. Lithium-assisted electrochemical welding in silicon nanowire battery electrodes[J]. Nano Letters, 12, 1392-1397(2012). http://europepmc.org/abstract/MED/22339576

    [88] Peng Y, Cullis T, Inkson B. Bottom-up nanoconstruction by the welding of individual metallic nanoobjects using nanoscale solder[J]. Nano Letters, 9, 91-96(2009). http://www.ncbi.nlm.nih.gov/pubmed/19072096/

    [89] Tohmyoh H, Imaizumi T, Hayashi H et al. Welding of Pt nanowires by Joule heating[J]. Scripta Materialia, 57, 953-956(2007). http://www.sciencedirect.com/science/article/pii/S1359646207005179

    [90] Zou J Y, Zhang X H, Xu C et al. Soldering carbon nanotube fibers by targeted electrothermal-induced carbon deposition[J]. Carbon, 121, 242-247(2017).

    Xiaoying Ren, Jianlei Cui, Yang Lu, Xuesong Mei. Research Progress on Electrical/Mechanical Properties of Interconnection Structures Based on Nanowelding[J]. Chinese Journal of Lasers, 2021, 48(8): 0802021
    Download Citation