• Chinese Optics Letters
  • Vol. 19, Issue 11, 113902 (2021)
Yuqiu Xu, Yonglan Yang, Xing Li, Xin Wang, and Weiwen Zou*
Author Affiliations
  • State Key Laboratory of Advanced Optical Communication Systems and Networks, Intelligent Microwave Lightwave Integration Innovation Center (imLic), Department of Electronic Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
  • show less
    DOI: 10.3788/COL202119.113902 Cite this Article Set citation alerts
    Yuqiu Xu, Yonglan Yang, Xing Li, Xin Wang, Weiwen Zou. Chip-scale Brillouin instantaneous frequency measurement by use of one-shot frequency-to-power mapping based on lock-in amplification[J]. Chinese Optics Letters, 2021, 19(11): 113902 Copy Citation Text show less
    References

    [1] M. Skolnik. Introduction to Radar Systems(2001).

    [2] X. Zou, B. Lu, W. Pan, L. Yan, A. Stöhr, J. Yao. Photonics for microwave measurements. Laser Photon. Rev., 10, 711(2016).

    [3] D. Marpaung. On-chip photonic-assisted instantaneous microwave frequency measurement system. IEEE Photon. Technol. Lett., 25, 837(2013).

    [4] B. Zhu, W. Zhang, S. Pan, J. Yao. High-sensitivity instantaneous microwave frequency measurement based on a silicon photonic integrated Fano resonator. J. Lightwave Technol., 37, 2527(2019).

    [5] D. Marpaung, J. Yao, J. Capmany. Integrated microwave photonics. Nat. Photon., 13, 80(2019).

    [6] Y. Zhou, F. Zhang, S. Pan. Instantaneous frequency analysis of broadband LFM signals by photonics-assisted equivalent frequency sampling. Chin. Opt. Lett., 19, 013901(2021).

    [7] Y. Chen, W. Zhang, J. Liu, J. Yao. On-chip two-step microwave frequency measurement with high accuracy and ultra-wide bandwidth using add-drop micro-disk resonators. Opt. Lett., 44, 2402(2019).

    [8] M. Pagani, B. Morrison, Y. Zhang, A. Casas-Bedoya, T. Aalto, M. Harjanne, M. Kapulainen, B. J. Eggleton, D. Marpaung. Low-error and broadband microwave frequency measurement in a silicon chip. Optica, 2, 751(2015).

    [9] M. Burla, X. Wang, M. Li, L. Chrostowski, J. Azaña. Wideband dynamic microwave frequency identification system using a low-power ultracompact silicon photonic chip. Nat. Commun., 7, 13004(2016).

    [10] H. Jiang, D. Marpaung, M. Pagani, K. Vu, D. Choi, S. J. Madden, L. Yan, B. J. Eggleton. Wide-range, high-precision multiple microwave frequency measurement using a chip-based photonic Brillouin filter. Optica, 3, 30(2016).

    [11] W. Zou, X. Long, X. Li, G. Xin, J. Chen. Brillouin instantaneous frequency measurement with an arbitrary response for potential real-time implementation. Opt. Lett., 44, 2045(2019).

    [12] B. J. Eggleton, C. G. Poulton, P. T. Rakich, M. J. Steel, G. Bahl. Brillouin integrated photonics. Nat. Photon., 13, 664(2019).

    [13] S. Li, X. Li, W. Zhang, J. Chen, W. Zou. Investigation of Brillouin properties in high-loss doped silica waveguides by comparison experiment. IEEE Photon. Technol. Lett., 32, 948(2020).

    [14] E. P. Ippen, R. H. Stolen. Stimulated Brillouin scattering in optical fibers. Appl. Phys. Lett., 21, 539(1972).

    [15] K. Hu, L. Yi, W. Wei, W. Hu. Microwave photonic filter design and optimization based on stimulated Brillouin scattering using a directly modulated pump. Chin. Opt. Lett., 17, 060603(2019).

    [16] J. H. Scofield. Frequency-domain description of a lock-in amplifier. Am. J. Phys., 62, 129(1994).

    Data from CrossRef

    [1] Yonglan Yang, Xin Wang, Yuqiu Xu, Dunwei Liu, Juan Huo, Weiwen Zou. Ultrabroad Brillouin instantaneous frequency measurement with a designed linear system response. Optics Letters, 47, 3243(2022).

    Yuqiu Xu, Yonglan Yang, Xing Li, Xin Wang, Weiwen Zou. Chip-scale Brillouin instantaneous frequency measurement by use of one-shot frequency-to-power mapping based on lock-in amplification[J]. Chinese Optics Letters, 2021, 19(11): 113902
    Download Citation