• Photonics Research
  • Vol. 2, Issue 6, 172 (2014)
Xiong Wang, Pu Zhou*, Xiaolin Wang, Hu Xiao, and and Zejin Liu
Author Affiliations
  • College of Optoelectronic Science and Engineering, National University of Defense Technology, Changsha 410073, China
  • show less
    DOI: 10.1364/PRJ.2.000172 Cite this Article Set citation alerts
    Xiong Wang, Pu Zhou, Xiaolin Wang, Hu Xiao, and Zejin Liu. Bursts with shape-alterable pulses in a compact Tm-doped fiber laser with simultaneous active intracavity phase and intensity modulations[J]. Photonics Research, 2014, 2(6): 172 Copy Citation Text show less
    References

    [1] D. E. Leaird, A. M. Weiner, S. Kamei, M. Ishii, A. Sugita, K. Okamoto. Generation of flat-topped 500-GHz pulse bursts using loss engineered arrayed waveguide gratings. IEEE Photon. Technol. Lett., 14, 816-818(2002).

    [2] R. R. Gattass, L. R. Cerami, E. Mazur. Micromachining of bulk glass with bursts of femtosecond laser pulses at variable repetition rates. Opt. Express, 14, 5279-5284(2006).

    [3] X. Zeng, X. L. Mao, R. Greif, R. E. Russo. Experimental investigation of ablation efficiency and plasma expansion during femtosecond and nanosecond laser ablation of silicon. Appl. Phys. A, 80, 237-241(2005).

    [4] J. König, S. Nolte, A. Tünnermann. Plasma evolution during metal ablation with ultrashort laser pulses. Opt. Express, 13, 10597-10607(2005).

    [5] W. Hu, Y. C. Shin, G. King. Modeling of multi-burst mode pico-second laser ablation for improved material removal rate. Appl. Phys. A, 98, 407-415(2010).

    [6] P. Deladurantaye, A. Cournoyer, M. Drolet, L. Desbiens, D. Lemieux, M. Briand, Y. Taillon. Material micromachining using bursts of high repetition rate picosecond pulses from a fiber laser. Proc. SPIE, 7914, 791404(2011).

    [7] L. Desbiens, M. Drolet, V. Roy, M. M. Sisto, Y. Taillon. Arbitrarily-shaped bursts of picosecond pulses from a fiber laser source for high-throughput applications. Proc. SPIE, 7914, 791420(2011).

    [8] T. S. McComb, D. McCal, R. Farrow, D. Logan, T. Lowder, C. Ye, T. Sosnowski, J. J. Koponen. Amplification of burst mode picosecond pulses to high peak powers in Chirally Coupled Core (3C) fibers. Advanced Solid-State Lasers Congress, JTh2A.36(2013).

    [9] H. Kalaycioglu, B. Eldeniz, F. O. Ilday, K. Eken. Burst-mode Yb fiber amplifier producing 40 μJ individual pulse energy. CLEO: QELS-Fundamental Science, W2A-W81A(2012).

    [10] R. Knappe. Applications of picosecond lasers and pulse-bursts in precision manufacturing. Proc. SPIE, 8243, 82430I(2012).

    [11] A. Zadok, J. Sendowski, A. Yariv. Passively generated high repetition rate pulse bursts using a fiber laser with a polarization maintaining section. Conference on Lasers and Electro-Optics/International Quantum Electronics Conference(2009).

    [12] V. García-Muñoz, M. A. Preciado, M. A. Muriel. Simultaneous ultrafast optical pulse train bursts generation and shaping based on Fourier series developments using superimposed fiber Bragg gratings. Opt. Express, 15, 10878-10889(2007).

    [13] H. Kalaycıoğlu, K. Eken, F. Ö. Ilday. Fiber amplification of pulse bursts up to 20  μJ pulse energy at 1  kHz repetition rate. Opt. Lett., 36, 3383-3385(2011).

    [14] H. Kalaycıoğlu, Y. B. Eldeniz, Ö. Akçaalan, S. Yavaş, K. Gürel, M. Efe, F. Ö. Ilday. 1  mJ pulse bursts from a Yb-doped fiber amplifier. Opt. Lett., 37, 2586-2588(2012).

    [15] S. Breitkopf, A. Klenke, T. Gottschall, H. Otto, C. Jauregui, J. Limpert, A. Tünnermann. 58  mJ burst comprising ultrashort pulses with homogenous energy level from an Yb-doped fiber amplifier. Opt. Lett., 37, 5169-5171(2012).

    [16] H. Sakata, S. Araki, T. Numano, M. Tomiki. All-fiber tunable Q-switched Tm fiber lasers for greenhouse gas sensing. Renewable Energy and the Environment Optics and Photonics Congress, ET4D.4(2012).

    [17] J. Geng, Q. Wang, S. Jiang. 2  μm fiber laser sources and their applications. Proc. SPIE, 8164, 816409(2011).

    [18] Z. Li, A. M. Heidt, N. Simakov, Y. Jung, J. M. O. Daniel, S. U. Alam, D. J. Richardson. Diode-pumped wideband thulium-doped fiber amplifiers for optical communications in the 1800–2050  nm window. Opt. Express, 21, 26450-26455(2013).

    [19] J. Li, Z. Sun, H. Luo, Z. Yan, K. Zhou, Y. Liu, L. Zhang. Wide wavelength selectable all-fiber thulium doped fiber laser between 1925  nm and 2200  nm. Opt. Express, 22, 5387-5399(2014).

    [20] . ISLA project aims to expand applications of 2-micron fiber laser technology(2011).

    [21] . ISLA—Integrated disruptive components for 2  μm fibre lasers(2011).

    [22] J. R. Salcedo. Dynamic pulsing of a MOPA pulsed fiber laser for optimized material processing. Lasers, Sources, and Related Photonic Devices, h2A-h31A(2012).

    [23] S. T. Hendow, R. Romero, S. A. Shakir, P. T. Guerreiro. Percussion drilling of metals using bursts of nanosecond pulses. Opt. Express, 19, 10221-10231(2011).

    [24] S. T. Hendow, S. A. Shakir. Structuring materials with nanosecond laser pulses. Opt. Express, 18, 10188-10199(2010).

    [25] H. Herfurth, R. Patwa, T. Lauterborn, S. Heinemann, H. Pantsar. Micromachining with tailored nanosecond pulses. Proc. SPIE, 6796, 67961G(2007).

    [26] P. Deladurantaye, D. Gay, A. Cournoyer, V. Roy, B. Labranche, B. M. Levesque, Y. Taillon. Material micromachining using a pulsed fiber laser platform with fine temporal nanosecond pulse shaping capability. Proc. SPIE, 7195, 71951S(2009).

    [27] A. Malinowski, K. T. Vu, K. K. Chen, J. Nilsson, Y. Jeong, S. Alam, D. Lin, D. J. Richardson. High power pulsed fiber MOPA system incorporating electro-optic modulator based adaptive pulse shaping. Opt. Express, 17, 20927-20937(2009).

    [28] M. Eckerle, C. Kieleck, J. Świderski, S. D. Jackson, G. Mazé, M. Eichhorn. Actively Q-switched and mode-locked Tm3+-doped silicate 2  μm fiber laser for supercontinuum generation in fluoride fiber. Opt. Lett., 37, 512-514(2012).

    [29] B. C. Dickinson, S. D. Jackson, T. A. King. 10  mJ total output from a gain-switched Tm-doped fibre laser. Opt. Commun., 182, 199-203(2000).

    [30] J. Yang, Y. Tang, J. Xu. Development and applications of gain-switched fiber lasers [Invited]. Photon. Res., 1, 52-57(2013).

    [31] L. A. Zenteno, H. Po. Frequency-modulated cavity-dumped Nd-doped fiber laser. Opt. Lett., 16, 315-317(1991).

    [32] R. Roy, K. S. Thornburg. Experimental synchronization of chaotic lasers. Phys. Rev. Lett., 72, 2009-2012(1994).

    [33] D. Ostling, P. G. Sinha, H. E. Engan. Spectral stability and smoothness of a phase-modulated fiber laser. Opt. Lett., 20, 219-221(1995).

    [34] S. Longhi, P. Laporta. Floquet theory of intracavity laser frequency modulation. Phys. Rev. A, 60, 4016-4028(1999).

    [35] X. Wang, P. Zhou, X. Wang, R. Tao, L. Si. 2  μm Tm-doped all-fiber pulse laser with active mode-locking and relaxation oscillation modulating. IEEE Photon. J., 5, 1502206(2013).

    [36] L. Escalante-Zarate, Y. O. Barmenkov, J. L. Cruz, M. V. Andrés. Q-switch modulator as a pulse shaper in Q-switched fiber lasers. IEEE Photon. Technol. Lett., 24, 312-314(2012).

    Xiong Wang, Pu Zhou, Xiaolin Wang, Hu Xiao, and Zejin Liu. Bursts with shape-alterable pulses in a compact Tm-doped fiber laser with simultaneous active intracavity phase and intensity modulations[J]. Photonics Research, 2014, 2(6): 172
    Download Citation