• Laser & Optoelectronics Progress
  • Vol. 52, Issue 6, 61701 (2015)
Hu Yujie1、2、*, Jiang Zhuqing1、2, Zhao Ye1、2, Huang Haochong1、2, and Wang Zhe1、2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3788/lop52.061701 Cite this Article Set citation alerts
    Hu Yujie, Jiang Zhuqing, Zhao Ye, Huang Haochong, Wang Zhe. Characteristics of Shift-Multiplexing Complex Spectral Domain Optical Coherence Tomography[J]. Laser & Optoelectronics Progress, 2015, 52(6): 61701 Copy Citation Text show less
    References

    [1] Huang D, Swanson E A, Lin C P, et al.. Optical coherence tomography[J]. Science, 1991, 254(5035): 1178-1181.

    [2] Grajciar B, Pircher M, Fercher A, et al.. Parallel Fourier domain optical coherence tomography for in vivo measurement of the human eye[J]. Optics Express, 2005, 13(4): 1131-1137.

    [3] Huang B, Bu P, Wang X, et al.. Full-range parallel Fourier-domain optical coherence tomography using a spatial carrier frequency[J]. Applied Optics, 2013, 52(5): 958-965.

    [4] Zhang K, Kang J U. Graphics processing unit accelerated non-uniform fast Fourier transform for ultrahigh-speed, real-time Fourier-domain OCT[J]. Optics Express, 2010, 18(22): 23472-23487.

    [5] Xi J, Huo L, Li J, et al.. Generic real-time uniform K-space sampling method for high-speed swept-source optical coherence tomography[J]. Optics Express, 2010, 18(9): 9511-9517.

    [6] Pyhtila J W, Wax A. Rapid, depth-resolved light scattering measurements using Fourier domain, angle-resolved low coherence interferometry[J]. Optics Express, 2004, 12(25): 6178-6183.

    [7] Zhu Yue, Gao Wanrong. High-resolution full-field optical coherence tomography for biological tissue[J]. Chinese J Lasers, 2014, 41(8): 0804002.

    [8] Bian Haiyi, Gao Wanrong, Zhang Xianling, et al.. Reconstruction method based on the detected matrix for spectraldomain optical coherence tomography[J]. Acta Optica Sinica, 2014, 34(2): 0211003.

    [9] Ma Z, Zhu S, Wang R, et al.. Fourier domain optical coherence tomography for imaging of biological tissues[C]. SPIE, 2005, 5630: 844-850.

    [10] Wang Ling, Zhu Hailong, Tu Pei, et al.. High-speed three-dimensional swept source optical coherence tomography system based on LabVIEW[J]. Chinese J Lasers, 2014, 41(7): 0704001.

    [11] Wojtkowski M, Leitgeb R, Kowalczyk A, et al.. In vivo human retinal imaging by Fourier domain optical coherence tomography[J]. Journal of Biomedical Optics, 2002, 7(3): 457-463.

    [12] Guo Xin, Wang Xiangzhao, Bu Peng, et al.. Effects of scattering on spectral shape and depth resolution in Fourier domain optical coherence tomography[J]. Acta Optica Sinica, 2014, 34(1): 0117001.

    [13] Zhu Xiaomeng, Gao Wanrong, Zhu Yue. Improved Kohler illumination-based full-field optical coherence tomography system[J]. Acta Optica Sinica, 2014, 34(5): 0511002.

    [14] Gotzinger E, Pircher M, Leitgeb R, et al.. High speed full range complex spectral domain optical coherence tomography[J]. Optics Express, 2005, 13(2): 583-594.

    [15] Huang H, Jiang Z, Wang D, et al.. Shift-multiplexing complex spectral-domain optical coherence tomography[J]. Optical Engineering, 2014, 53(1): 014101.

    Hu Yujie, Jiang Zhuqing, Zhao Ye, Huang Haochong, Wang Zhe. Characteristics of Shift-Multiplexing Complex Spectral Domain Optical Coherence Tomography[J]. Laser & Optoelectronics Progress, 2015, 52(6): 61701
    Download Citation