• Journal of Inorganic Materials
  • Vol. 36, Issue 2, 161 (2021)
Qi ZHAO1, Ke QIAO1, Yongji YAO1, Zhang CHEN1, Dongchu CHEN2、*, and Yanfeng GAO1、*
Author Affiliations
  • 11. School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
  • 22. School of Materials Science and Energy Engineering, Foshan University, Foshan 528000, China
  • show less
    DOI: 10.15541/jim20200376 Cite this Article
    Qi ZHAO, Ke QIAO, Yongji YAO, Zhang CHEN, Dongchu CHEN, Yanfeng GAO. High-conductivity Hydrophobic Fumed-SiO2 Composite Gel Electrolyte for High Performance Electrochromic Devices[J]. Journal of Inorganic Materials, 2021, 36(2): 161 Copy Citation Text show less
    References

    [1] J PATEL K, G BHATT G, R RAY J et al. All-inorganic solid-state electrochromic devices: a review. Journal of Solid State Electrochemistry, 21, 1-11(2016).

    [2] SA AGNIHOTRYA, SS SEKHON P. PMMA based gel electrolyte for EC smart windows. Electrochimica Acta, 44, 3121-3126(1998).

    [3] H LI, J WANG, Q SHI et al. Constructing three-dimensional quasi- vertical nanosheet architectures from self-assemble two-dimensional WO3·2H2O for efficient electrochromic devices. Applied Surface Science, 380, 281-287(2016).

    [4] F GROCE, B APPETECCHI G, L PERSI et al. Nanocomposite polymer electrolytes for lithium batteries. Nature, 394, 456(1998).

    [5] B AZIZ S, J WOO T, Z KADIR M F et al. A conceptual review on polymer electrolytes and ion transport models. Journal of Science: Advanced Materials and Devices, 3, 1-17(2018).

    [6] C TAO, M GAO, B YIN et al. A promising TPU/PEO blend polymer electrolyte for all-solid-state lithium ion batteries. Electrochimica Acta, 257, 31-39(2017).

    [7] R JUNG H, H JU D, J LEE W et al. Electrospun hydrophilic fumed silica/polyacrylonitrile nanofiber-based composite electrolyte membranes. Electrochimica Acta, 54, 3630-3637(2009).

    [8] V KUPPU S, R JEYARAMAN A, K GURUVIAH P et al. Preparation and characterizations of PMMA-PVDF based polymer composite electrolyte materials for dye sensitized solar cell. Current Applied Physics, 18, 619-625(2018).

    [9] W ZHAI, H ZHU, L WANG et al. Study of PVDF-HFP/PMMA blended micro-porous gel polymer electrolyte incorporating ionic liquid [BMIM] BF4 for lithium ion batteries. Electrochimica Acta, 133, 623-630(2014).

    [10] K VIGNAROOBAN et al. Effect of TiO2 nano-filler and EC plasticizer on electrical and thermal properties of poly(ethylene oxide)(PEO) based solid polymer electrolytes. Solid State Ionics, 266, 25-28(2014).

    [11] G VIJAYAKUMAR, N KARTHICK S et al. Effect of nanoscale CeO2 on PVDF-HFP-based nanocomposite porous polymer electrolytes for Li-ion batteries. Journal of Solid State Electrochemistry, 12, 1135-1141(2007).

    [12] F CROCE, B SCROSATI, G MARIOTTO. Electrochemical and spectroscopic study of the transport properties of composite polymer electrolytes. Chem. Mater., 4, 1134-1136(1992).

    [13] P YAO, B ZHU, H ZHAI et al. PVDF/palygorskite nanowire composite electrolyte for 4 V rechargeable lithium batteries with high energy density. Nano Letters, 18, 6113-6120(2018).

    [14] S AHMAD, S AHMAD, A AGNIHOTRY S. Nanocomposite electrolytes with fumed silica in poly(methyl methacrylate): thermal, rheological and conductivity studies. Journal of Power Sources, 140, 151-156(2005).

    [15] M JITJAICHAM, B KUSUKTHAM. Spinning of poly(ethylene terephthalate) fiber composites incorporated with fumed silica. Silicon, 10, 575-583(2017).

    [16] J WANG, E KHOO, PS LEE et al. Synthesis, assembly, and electrochromic properties of uniform crystalline WO3 nanorods. J. Phys. Chem. C, 112, 14306-14312(2008).

    [17] Q ZHAO, Y FANG, K QIAO et al. Printing of WO3/ITO nanocomposite electrochromic smart windows. Solar Energy Materials and Solar Cells, 194, 95-102(2019).

    [18] A EL-FATTAH M, A El SAEED. Chemical interaction of different sized fumed silica with epoxy via ultrasonication for improved coating. Progress in Organic Coatings, 129, 1-9(2019).

    [19] C PUGUAN J M, J CHUNG W, H KIM et al. Ion-conductive and transparent PVdF-HFP/silane-functionalized ZrO2 nanocomposite electrolyte for electrochromic applications. Electrochimica Acta, 196, 236-244(2016).

    [20] D SAIKIA, G WU C, J FANG et al. Organic-inorganic hybrid polymer electrolytes based on polyether diamine, alkoxysilane, and trichlorotriazine: synthesis, characterization, and electrochemical applications. Journal of Power Sources, 269, 651-660(2014).

    [21] Q TANG, H LI, Y YUE et al. 1-Ethyl-3-methylimidazolium tetrafluoroborate-doped high ionic conductivity gel electrolytes with reduced anodic reaction potentials for electrochromic devices. Materials & Design, 118, 279-285(2017).

    [22] R LEONES, C SABADINI R, C SENTANIN F et al. Polymer electrolytes for electrochromic devices through solvent casting and Sol-Gel routes. Solar Energy Materials & Solar Cells, 169, 98-106(2017).

    [23] F ZHANG, G DONG, J LIU et al. Polyvinyl butyral-based gel polymer electrolyte films for solid-state laminated electrochromic devices. Ionics, 23, 1879-1888(2017).

    [24] R RAGHAVAN S, W RILEY M, S FEDKIW P et al. Composite polymer electrolytes based on poly(ethylene glycol) and hydrophobic fumed silica: dynamic rheology and microstructure. Chemistry of Materials, 10, 244-251(1998).

    [25] A ŠURCA VUK, V JOVANOVSKI, A POLLET-VILLARD et al. Imidazolium-based ionic liquid derivatives for application in electrochromic devices. Solar Energy Materials and Solar Cells, 92, 126-135(2008).

    [26] J BAE, H KIM, C MOON H et al. Low-voltage, simple WO3-based electrochromic devices by directly incorporating an anodic species into the electrolyte. Journal of Materials Chemistry C, 46, 10887-10892(2016).

    [27] J CUI, Z ZHOU, M JIA et al. Solid polymer electrolytes with flexible framework of SiO2 nanofibers for highly safe solid lithium batteries. Polymers, 12, 1324(2020).

    Qi ZHAO, Ke QIAO, Yongji YAO, Zhang CHEN, Dongchu CHEN, Yanfeng GAO. High-conductivity Hydrophobic Fumed-SiO2 Composite Gel Electrolyte for High Performance Electrochromic Devices[J]. Journal of Inorganic Materials, 2021, 36(2): 161
    Download Citation