• Chinese Journal of Lasers
  • Vol. 48, Issue 15, 1501005 (2021)
Jiading Tian1,2, Qirong Xiao1,2,*, Dan Li1,2, Zheng Zhang1,2..., Haoyu Yin1,2, Ping Yan1,2 and Mali Gong1,2|Show fewer author(s)
Author Affiliations
  • 1Ministry of Education Key Laboratory of Photonics Control Technology, Department of Precision Instruments, Tsinghua University, Beijing 100084, China
  • 2State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing 100084, China
  • show less
    DOI: 10.3788/CJL202148.1501005 Cite this Article Set citation alerts
    Jiading Tian, Qirong Xiao, Dan Li, Zheng Zhang, Haoyu Yin, Ping Yan, Mali Gong. Fiber Fuse Damage Effect in Fiber Lasers: A Review[J]. Chinese Journal of Lasers, 2021, 48(15): 1501005 Copy Citation Text show less
    References

    [1] Kashyap R. The fiber fuse: from a curious effect to a critical issue: a 25th year retrospective[J]. Optics Express, 21, 6422-6441(2013).

    [2] Kashyap R, Blow K J. Observation of catastrophic self-propelled self-focusing in optical fibers[J]. Electronics Letters, 24, 47-49(1988).

    [3] Hand D P. Russell P S J. Soliton-like thermal shock-waves in optical fibres: origin of periodic damage tracks[C]. //1988 Fourteenth European Conference on Optical Communication, ECOC 88 (Conf. Publ. No.292), September 11-15, 1988, Brighton, UK, 1, 111-114(1988).

    [4] Cong Z. Self-propelled self-focusing effect in optical fibers[J]. Laser & Optoelectronics Progress, 25, 24(1988).

    [5] Hand D P, Russell P S. Solitary thermal shock waves and optical damage in optical fibers: the fiber fuse[J]. Optics Letters, 13, 767-769(1988).

    [6] Shen J H, Cheng Y F, Shao Z H. Reliability study on the optical fiber communications systems having high launching power[J]. Optical Fiber & Electric Cable and Their Applications, 12-15, 23(2006).

    [7] Shuto Y, Yanagi S, Asakawa S et al. Fiber fuse generation in single-mode fiber-optic connectors[J]. IEEE Photonics Technology Letters, 16, 174-176(2004).

    [8] Yanagi S, Asakawa S, Nagase R. Characteristics of fibre-optic connector at high-power optical incidence[J]. Electronics Letters, 38, 977-978(2002).

    [9] Dawson J W, Messerly M J, Beach R J et al. Ultimate power limits of optical fibers[C]. //Optical Fiber Communication Conference 2010, March 21-25, 2010, San Diego, California, United States, OMO6(2010).

    [10] Yang C. Research on large mode field thulium-doped all-fiber laser[D](2018).

    [11] Luo Y, Wang X L, Zhang H W et al. Amplified spontaneous emission characteristics and locations of high temperature vulnerable point in fiber amplifiers[J]. Acta Physica Sinica, 66, 234206(2017).

    [12] Zheng Z J. Study on thulium-doped fiber laser and its application in all-fiber MIR supercontinuum generation[D](2018).

    [13] Zhang H Y, Li Y, Yan D L et al. All-fiber high power supercontinuum generation by cascaded photonic crystal fibers ranging from 370 nm to 2400 nm[J]. IEEE Photonics Journal, 12, 1-8(2020).

    [14] Matniyaz T, Kong F T, Kalichevsky-Dong M T et al. 302 W single-mode power from an Er/Yb fiber MOPA[J]. Optics Letters, 45, 2910-2913(2020).

    [15] Percival R M, Sikora E S R, Wyatt R. Catastrophic damage and accelerated ageing in bent fibres caused by high optical powers[J]. Electronics Letters, 36, 414-416(2000).

    [16] Logunov S L. DeRosa M E. Effect of coating heating by high power in optical fibres at small bend diameters[J]. Electronics Letters, 39, 897-898(2003).

    [17] Seo K, Nishimura N, Shiino M et al. Evaluation of high-power endurance in optical fiber links[J]. Furukawa Review, 17-22(2003).

    [18] Wang J, Gray S, Walton D et al. Fiber fuse in high-power optical fiber[J]. Proceedings of SPIE, 7134, 71342E(2008).

    [19] Kurokawa K. Optical fiber for high-power optical communication[J]. Crystals, 2, 1382-1392(2012).

    [20] Vázquez C, López-Cardona J D, Lallana P C et al. Multicore fiber scenarios supporting power over fiber in radio over fiber systems[J]. IEEE Access, 7, 158409-158418(2019).

    [21] Jiang S L. Weakly-coupled space division multiplexing optical fibers and key components for large-capacity optical fiber communication[D](2019).

    [22] Huang A Q, Li R P, Egorov V et al. Laser-damage attack against optical attenuators in quantum key distribution[J]. Physical Review Applied, 13, 034017(2020).

    [23] Davis D D, Jr, Mettler S C, DiGiovanni D J. Experimental data on the fiber fuse[J]. Proceedings of SPIE, 2714, 202-210(1996).

    [24] Davis D D, Jr, Mettler S C, DiGiovanni D J. Comparative evaluation of fiber fuse models[J]. Proceedings of SPIE, 2966, 592-606(1997).

    [25] Bufetov I A, Frolov A A, Shubin A V et al. Propagation of an optical discharge through optical fibres upon interference of modes[J]. Quantum Electronics, 38, 441-444(2008).

    [26] Shuto Y, Yanagi S, Asakawa S et al. Fiber fuse phenomenon in triangular-profile single-mode optical fibers[J]. Journal of Lightwave Technology, 24, 846-852(2006).

    [27] Mizuno Y, Hayashi N, Tanaka H et al. Observation of polymer optical fiber fuse[J]. Applied Physics Letters, 104, 043302(2014).

    [28] Dianov E M, Bufetov I A, Frolov A A et al. Fiber fuse effect in microstructured fibers[J]. IEEE Photonics Technology Letters, 16, 180-181(2004).

    [29] Ha W, Jeong Y, Oh K. Fiber fuse effect in hollow optical fibers[J]. Optics Letters, 36, 1536-1538(2011).

    [30] Hanzawa N, Kurokawa K, Tsujikawa K et al. New propagation mode of fiber fuse with a long-period damage track in hole-assisted fiber (HAF)[C]. //Optical Fiber Communication Conference 2010, March 21-25, 2010, San Diego, California, United States, OMO5(2010).

    [31] Hanzawa N, Kurokawa K, Tsujikawa K et al. Observation of a propagation mode of a fiber fuse with a long-period damage track in hole-assisted fiber[J]. Optics Letters, 35, 2004-2006(2010).

    [32] Bufetov I, Kolyadin A, Yatsenko Y et al. Fiber fuse effect in hollow-core and solid core optical fibers: comparison[C]. //Advanced Solid State Lasers 2019, September 29-October 3, 2019, Vienna, Austria, JW2A, 28(2019).

    [33] Hanzawa N, Kurokawa K, Tsujikawa K et al. Suppression of fiber fuse propagation in hole assisted fiber and photonic crystal fiber[J]. Journal of Lightwave Technology, 28, 2115-2120(2010).

    [34] Xing S D, Kharitonov S, Hu J Q et al. Fiber fuse in chalcogenide photonic crystal fibers[J]. Optics Letters, 43, 1443-1446(2018).

    [35] Xing S D, Kharitonov S, Hu J Q et al. Fiber fuse in GeAsSe photonic crystal fiber and its impact on undamaged segment[C]. //Conference on Lasers and Electro-Optics 2018, May 13-18, 2018, San Jose, California, JTh2A, 93(2018).

    [36] Zhang H W, Zhou P, Wang X L et al. Fiber fuse effect in high-power double-clad fiber laser[C]. //Conference on Lasers and Electro-Optics/Pacific Rim 2013, June 30-July 4, 2013, Kyoto, Japan, WPD_4(2013).

    [37] Sun J Y, Xiao Q R, Li D et al. Fiber fuse behavior in kW-level continuous-wave double-clad field laser[J]. Chinese Physics B, 25, 014204(2016).

    [38] Xiao Q R, Tian J D, Huang Y S et al. Internal features of fiber fuse in a Yb-doped double-clad fiber at 3 kW[J]. Chinese Physics Letters, 35, 054201(2018).

    [39] Domingues F, Frias A R, Antunes P et al. Observation of fuse effect discharge zone nonlinear velocity regime in erbium-doped fibres[J]. Electronics Letters, 48, 1295-1296(2012).

    [40] Dianov E M, Bufetov I A, Frolov A A et al. Catastrophic destruction of fluoride and chalcogenide optical fibres[J]. Electronics Letters, 38, 783-784(2002).

    [41] Dianov E M, Bufetov I A, Frolov A A et al. Catastrophic destruction of optical fibres of various composition caused by laser radiation[J]. Quantum Electronics, 32, 476-478(2002).

    [42] Dianov E M, Bufetov I A, Frolov A A. Catastrophic damage in specialty optical fibers under CW medium-power laser radiation[J]. Journal of Optics, 33, 171-180(2004).

    [43] Xing S D, Kharitonov S, Hu J Q et al. Study of fiber fuse induced damage in chalcogenide photonic crystal fibers[C]. //Laser Congress 2018 (ASSL), November 4-8, 2018, Boston, Massachusetts, ATh1A, 4(2018).

    [44] Mizuno Y, Hayashi N, Tanaka H et al. Propagation mechanism of polymer optical fiber fuse[J]. Scientific Reports, 4, 4800(2014).

    [45] Mizuno Y, Hayashi N, Tanaka H et al. First observation of fiber fuse phenomenon in polymer optical fibers[J]. Proceedings of SPIE, 9157, 9157AI(2014).

    [46] Yamada M, Tomoe A, Takara H. Light scattering characteristics of hole formed by fibre fuse[J]. Electronics Letters, 48, 519-520(2012).

    [47] Driscoll T J, Calo J M, Lawandy N M. Explaining the optical fuse[J]. Optics Letters, 16, 1046-1048(1991).

    [48] Todoroki S I. In-situ observation of fiber-fuse propagation[J]. Japanese Journal of Applied Physics, 44, 4022-4024(2005).

    [49] Dianov E M, Fortov V E, Bufetov I A et al. Temperature of optical discharge under action of laser radiation in silica-based fibers[C]. //2005 31st European Conference on Optical Communication, ECOC 2005, September 25-29, 2005, Glasgow, 469-470(2005).

    [50] Dianov E M, Fortov V E, Bufetov I A et al. High-speed photography, spectra, and temperature of optical discharge in silica-based fibers[J]. IEEE Photonics Technology Letters, 18, 752-754(2006).

    [51] Shuto Y, Yanagi S, Asakawa S et al. Simulation of fiber fuse phenomenon in single-mode optical fibers[J]. Journal of Lightwave Technology, 21, 2511(2003).

    [52] Jiang S L, Ma L, Wang S et al. Mode-interference-induced oscillation in propagation speed of fiber fuse in few-mode fibers[J]. Optics Letters, 43, 4252-4255(2018).

    [53] Jiang S L, Ma L, Wang S et al. Real-time observation of microsecond-order periodic velocity change of fiber fuse using heterodyne detection[C]. //CLEO: Science and Innovations 2017, May 14-19, 2017, San Jose, CA, USA, STh4K, 2(2017).

    [54] Rocha A M, André P S, Domingues F et al. Reflected light from the fiber fuse propagation[C]. //2011 IEEE EUROCON-International Conference on Computer as a Tool, April 27-29, 2011, Lisbon, Portugal., 1-3(2011).

    [55] André P S, Domingues F, Facão M et al. Optical fuse discharge temperature determination employing the cie color coordinates[C]. //Conference on Lasers and Electro-Optics/Pacific Rim 2011, August 28-September 1, 2011, Sydney, Australia, C491(2011).

    [56] Bufetov I A, Frolov A A, Efremov V P et al. Fast optical discharge propagation through optical fibres under kW-range laser radiation[C]. //2005 31st European Conference on Optical Communication, ECOC 2005, September 25-29, 2005, Glasgow, 6, 39-40(2005).

    [57] Frolov A A, Bufetov I A, Efremov V P et al. Optical discharge in silica-based fibers: high-speed propagation under kW-range laser radiation[J]. Proceedings of SPIE, 6193, 61930W(2006).

    [58] Efremov V P, Frolov A A, Dianov E M et al. Dynamics of laser-induced shock wave in silica: dynamika laserowa indukowana W fali uderzeniowej W krzemionce[J]. Archives of Metallurgy and Materials, 59, 1599-1603(2014).

    [59] Fortov V E, Khishchenko K V, Karamurzov B S et al. XXX international conference on interaction of intense energy fluxes with matter[J]. Journal of Physics: Conference Series, 653, 011001(2015).

    [60] Lee J, Lee K H, Jeong H et al. A study of the fiber fuse in single-mode 2-kW-class high-power fiber amplifiers[J]. Korean Journal of Optics and Photonics, 31, 7(2020).

    [61] Jiang S, Ma L, Fan X et al. Real-time locating and speed measurement of fibre fuse using optical frequency-domain reflectometry[J]. Scientific Reports, 6, 25585(2016).

    [62] Atkins R M, Simpkins P G, Yablon A D. Track of a fiber fuse: a Rayleigh instability in optical waveguides[J]. Optics Letters, 28, 974-976(2003).

    [63] Yamada M, Koyama O, Katsuyama Y et al. Heating and burning of optical fiber by light scattered from bubble train formed by optical fiber fuse[C]. //2011 Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference, March 6-10, 2011, Los Angeles, CA, USA., 1-3(2011).

    [64] Todoroki S I. Origin of periodic void formation during fiber fuse[J]. Optics Express, 13, 6381-6389(2005).

    [65] Todoroki S. Transient propagation mode of fiber fuse leaving no voids[J]. Optics Express, 13, 9248-9256(2005).

    [66] Yakovlenko S I. Plasma behind the front of a damage wave and the mechanism of laser-induced production of a chain of caverns in an optical fibre[J]. Quantum Electronics, 34, 765-770(2004).

    [67] Todoroki S I. Fiber fuse propagation modes in typical single-mode fibers[C]. //Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013, March 17-21, 2013, Anaheim, California, JW2A, 11(2013).

    [68] Hanzawa N, Tsujikawa K, Kurokawa K et al. Fiber fuse propagation characteristics of LP01 and LP11 modes in few-mode fiber[J]. Journal of Lightwave Technology, 34, 3628-3632(2016).

    [69] Kashyap R. High average power effects in optical fibres and devices[J]. Proceedings of SPIE, 4940, 108-117(2003).

    [70] Xiao Q R, Tian J D, Yan P et al. Exploring the initiation of fiber fuse[J]. Scientific Reports, 9, 1-10(2019).

    [71] Bufetov I A, Frolov A A, Shubin A V et al. Fiber fuse effect: new results on the fiber damage structure[C]. //33rd European Conference and Exhibition on Optical Communication-ECOC 2007, September 16-20, 2007, Berlin, Germany, 1-2(2007).

    [72] Abedin K S, Morioka T. Remote detection of fiber fuse propagating in optical fibers[C]. //Optical Fiber Communication Conference and National Fiber Optic Engineers Conference, March 22-26, 2009, San Diego, California, OThD5(2009).

    [73] Todoroki S I. Quantitative evaluation of fiber fuse initiation probability in typical single-mode fibers[C]. //Optical Fiber Communication Conference 2015, March 22-26, 2015, Los Angeles, California, United States, W2A, 33(2015).

    [74] Todoroki S. Quantitative evaluation of fiber fuse initiation with exposure to arc discharge provided by a fusion splicer[J]. Scientific Reports, 6, 25366(2016).

    [75] Kashyap R. History and progress of the fiber fuse[C]. //2012 17th Opto-Electronics and Communications Conference (OECC 2012) Technical Digest, July 1, 2012, Busan, Korea., 807-808(2012).

    [76] Facão M, Rocha A M, de Brito André P S. Traveling solutions of the fuse effect in optical fibers[J]. Journal of Lightwave Technology, 29, 109-114(2011).

    [77] Shuto Y, Yanagi S, Asakawa S et al. Fiber fuse phenomenon in step-index single-mode optical fibers[J]. IEEE Journal of Quantum Electronics, 40, 1113-1121(2004).

    [78] Hamatani K, Kurokawa K, Nozoe S et al. Dopant dependence of fiber fuse propagation threshold[C]. //2019 24th Microoptics Conference (MOC), November 17-20, 2019, Toyama, Japan., 156-157(2019).

    [79] Todoroki S. In-situ observation of fiber-fuse ignition[J]. Proceedings of SPIE, 6161, 61610N(2006).

    [80] Kashyap R, Sayles A H, Cornwell G F. Heat-flow modeling and visualization of catastrophic self-propagating damage in single-mode optical fibers at low powers[J]. Proceedings of SPIE, 2966, 586-591(1997).

    [81] Shuto Y. Evaluation of high-temperature absorption coefficients of ionized gas plasmas in optical fibers[J]. IEEE Photonics Technology Letters, 22, 134-136(2010).

    [82] Shuto Y. Cavity formation modeling of fiber fuse in single-mode optical fibers[J]. Advances in OptoElectronics, 2017, 1-11(2017).

    [83] Shuto Y. Simulation of fiber fuse phenomenon in photonic crystal fibers[J]. Optical Fiber Technology, 61, 102435(2021).

    [84] Tkachev A N, Yakovlenko S I. Calculation of the velocity and threshold of a thermal absorption wave of laser radiation in an optical fibre[J]. Quantum Electronics, 34, 761-764(2004).

    [85] Yakovlenko S I. On reasons for strong absorption of light in an optical fibre at high temperature[J]. Quantum Electronics, 34, 787-789(2004).

    [86] Yakovlenko S I. Physical processes upon the optical discharge propagation in optical fiber[J]. Laser Physics, 16, 1273-1290(2006).

    [87] Yakovlenko S I. Plasma in bright spot and nature of void chain in fiber fuse track[J]. Proceedings of SPIE, 6161, 61610M(2006).

    [88] Bumarin E D, Yakovlenko S I. Temperature distribution in the bright spot of the optical discharge in an optical fiber[J]. Laser Physics, 16, 1235-1241(2006).

    [89] Golyatina R I, Tkachev A N, Yakovlenko S I. Calculation of velocity and threshold for a thermal wave of laser radiation absorption in a fiber optic waveguide based on the two-dimensional nonstationary heat conduction equation[J]. Laser Physics, 14, 1429(2004).

    [90] Shuto Y. Evaluation of high-temperature absorption coefficients of ionized gas plasmas in optical fibers[J]. IEEE Photonics Technology Letters, 22, 134-136(2010).

    [91] Akhmediev N, Russell P S J, Taki M et al. Heat dissipative solitons in optical fibers[J]. Physics Letters A, 372, 1531-1534(2008).

    [92] Ankiewicz A, Chen W, Russell P S et al. Velocity of heat dissipative solitons in optical fibers[J]. Optics Letters, 33, 2176-2178(2008).

    [93] Abedin K S, Nakazawa M, Miyazaki T. Backreflected radiation due to a propagating fiber fuse[J]. Optics Express, 17, 6525-6531(2009).

    [94] Abedin K S, Miyazaki T, Nakazawa M. Measurements of spectral broadening and Doppler shift of backreflections from a fiber fuse using heterodyne detection[J]. Optics Letters, 34, 3157-3159(2009).

    [95] Rocha A M, Antunes P, Domingues F et al. Configuration for detecting the fiber fuse propagation using a FBG sensor[C]. //12th International Conference on Transparent Optical Networks (ICTON), June 27-July 1, 2010, Munich, Germany., 1-4(2011).

    [96] Rocha A M, da Costa Antunes P F, de Fátima F Domingues M et al. Detection of fiber fuse effect using FBG sensors[J]. IEEE Sensors Journal, 11, 1390-1394(2011).

    [97] André P S, Facão M, Rocha A M et al. Evaluation of the fuse effect propagation in networks infrastructures with different types of fibers[C]. //Optical Fiber Communication Conference 2010, March 21-25, 2010, San Diego, California, United States, JWA10(2010).

    [98] Abedin K S, Nakazawa M. Real time monitoring of a fiber fuse using an optical time-domain reflectometer[J]. Optics Express, 18, 21315-21321(2010).

    [99] Jiang S L, Ma L, Fan X Y et al. Observation of fiber fuse propagation speed with high temporal resolution using heterodyne detection and time-frequency analysis[J]. Optics Letters, 42, 3355(2017).

    [100] Kinoshita T, Sato N, Yamada M. Detection and termination system for optical fiber fuse[C]. //2013 18th OptoElectronics and Communications Conference held jointly with 2013 International Conference on Photonics in Switching, June 30-July 4, 2013, Kyoto, Japan, WS4_6(2013).

    [101] Todoroki S I, Inoue S. Optical fuse by carbon-coated TeO2 glass segment inserted in silica glass optical fiber circuit[J]. Japanese Journal of Applied Physics, 43, L256-L257(2004).

    [102] Todoroki S I, Inoue S. Observation of blowing out in low loss passive optical fuse formed in silica glass optical fiber circuit[J]. Japanese Journal of Applied Physics, 43, L728-L730(2004).

    [103] Hand D P, Birks T A. Single-mode tapers as‘fibre fuse’ damage circuit-breakers[J]. Electronics Letters, 25, 33-34(1989).

    [104] Dianov E M, Bufetov I A, Frolov A A. Destruction of silica fiber cladding by the fuse effect[J]. Optics Letters, 29, 1852-1854(2004).

    [105] Rocha A M, Fernandes G, Domingues F et al. Halting the fuse discharge propagation using optical fiber microwires[J]. Optics Express, 20, 21083-21088(2012).

    [106] Rocha A M, Fernandes G, Domingues F et al. Fiber fuse effect propagation break using optical fiber taper[C]. //The 16th Opto-Electronics And Communications Conference, OECC 2011, July 4-8, 2011, Kaohsiung, Taiwan, China., 593-594(2011).

    [107] Yanagi S, Asakawa S, Kobayashi M et al. Fiber fuse terminator[C]. //CLEO/Pacific Rim 2003. The 5th Pacific Rim Conference on Lasers and Electro-Optics, December 15-19, 2003, Taipei, Taiwan, China.(2003).

    [108] Kurokawa K, Hanzawa N. Suppression of fiber fuse propagation and its break in compact fiber fuse terminator[C]. //2013 18th OptoElectronics and Communications Conference held jointly with 2013 International Conference on Photonics in Switching, June 30-July 4, 2013, Kyoto, Japan, WS4_5(2013).

    [109] Kurokawa K. Techniques to detect and stop fiber fuses[C]. //Optical Fiber Communication Conference 2014, March 9-13, 2014, San Francisco, California, United States, M3J, 2(2014).

    [110] Furuya S, Kurokawa K. Fiber fuse terminator consisting of a step-index multimode fiber spliced with SMFs[J]. IEICE Communications Express, 9, 400-404(2020).

    [111] Ishikawa S, Kurokawa K, Hanzawae N et al. Suppression of fiber fuse initiation by amplitude modulation of input light[C]. //2019 24th Microoptics Conference (MOC), November 17-20, 2019, Toyama, Japan., 152-153(2019).

    [112] Yan P, Wang X J, Li D et al. High-power 1018 nm ytterbium-doped fiber laser with output of 805 W[J]. Optics Letters, 42, 1193-1196(2017).

    [113] Yan P, Wang X J, Wang Z H et al. A 1150-W 1018-nm fiber laser bidirectional pumped by wavelength-stabilized laser diodes[J]. IEEE Journal of Selected Topics in Quantum Electronics, 24, 1-6(2018).

    [114] Tian J D, Xiao Q R, Li D et al. Hybrid-structure 1018-nm monolithic single-mode fiber laser producing high power and high efficiency[J]. OSA Continuum, 2, 1138-1147(2019).

    [115] Tian J D, Xiao Q R, Li D et al. Suppressing the amplified spontaneous emission in the high-power 1018-nm monolithic fiber laser by decreasing the feedback from the inner reflections[J]. Journal of the Optical Society of America B, 37, 2514-2522(2020).

    [116] Wang Z H, Xiao Q R, Huang Y S et al. Dual-wavelength bidirectional pumped high-power Raman fiber laser[J]. High Power Laser Science and Engineering, 7, e5(2019).

    [117] Yan P, Wang Z H, Wang X J et al. Beam transmission properties in high power ytterbium-doped tandem-pumping fiber amplifier[J]. IEEE Photonics Journal, 11, 1-12(2019).

    [118] Wang Z H, Yan P, Huang Y S et al. An efficient 4-kW level random fiber laser based on a tandem-pumping scheme[J]. IEEE Photonics Technology Letters, 31, 817-820(2019).

    [119] Wang Z H, Qi T C, Huang Y S et al. High-power core-pumped quasi 4 kW Raman fiber lasers[C]. //2020 Conference on Lasers and Electro-Optics, May 10-15, 2020, San Jose, CA, USA., 1-2(2017).

    [120] Tian J D, Xiao Q R, Li D et al. Tandem-pumped high-power narrow-linewidth fiber laser tunable from 1060-1090 nm[J]. Journal of Lightwave Technology, 38, 1461-1467(2020).

    [121] Yu W L, Yan P, Xiao Q R et al. Power scalability of a continuous-wave high-power Er-Yb co-doped fiber amplifier pumped by Yb-doped fiber lasers[J]. Applied Optics, 60, 2046-2055(2021).

    [122] Wang Z H, Yu W L, Tian J D et al. 5.1 kW tandem-pumped fiber amplifier seeded by random fiber laser with high suppression of stimulated Raman scattering[J]. IEEE Journal of Quantum Electronics, 57, 1-9(2021).

    [123] Tokunaga D, Sato S, Hidai H et al. A novel method of triggering fiber fuse inside glass by optical breakdown and glass drilling as its application[J]. Applied Physics A, 125, 1-9(2019).

    [124] Lin G R, Baiad M D, Gagne M et al. Harnessing the fiber fuse for sensing applications[J]. Optics Express, 22, 8962-8969(2014).

    [125] Antunes P F C, Domingues M F F, Alberto N J et al. Optical fiber microcavity strain sensors produced by the catastrophic fuse effect[J]. IEEE Photonics Technology Letters, 26, 78-81(2014).

    [126] Domingues M F, Antunes P, Alberto N et al. Enhanced sensitivity high temperature optical fiber FPI sensor created with the catastrophic fuse effect[J]. Microwave and Optical Technology Letters, 57, 972-974(2015).

    [127] Alberto N, Tavares C, Domingues M F et al. Relative humidity sensing using micro-cavities produced by the catastrophic fuse effect[J]. Optical and Quantum Electronics, 48, 1-8(2016).

    [128] Domingues M F, Rodriguez C A, Martins J et al. Cost-effective optical fiber pressure sensor based on intrinsic Fabry-Perot interferometric micro-cavities[J]. Optical Fiber Technology, 42, 56-62(2018).

    [129] Domingues M F, Antunes P, Alberto N et al. Cost effective refractive index sensor based on optical fiber micro cavities produced by the catastrophic fuse effect[J]. Measurement, 77, 265-268(2016).

    [130] Martins J, Diaz C A R, Domingues M F et al. Low-cost and high-performance optical fiber-based sensor for liquid level monitoring[J]. IEEE Sensors Journal, 19, 4882-4888(2019).

    [131] Alberto N, Domingues M F, Belo J H et al. Optical fiber fuse effect based sensor for magnetic field monitoring[J]. Proceedings of SPIE, 11028, 110281S(2019).

    [132] Leal-Junior A, Frizera A, Lee H et al. Strain, temperature, moisture, and transverse force sensing using fused polymer optical fibers[J]. Optics Express, 26, 12939-12947(2018).

    [133] Leal-Junior A, Frizera A, Lee H et al. Design and characterization of a curvature sensor using fused polymer optical fibers[J]. Optics Letters, 43, 2539-2542(2018).

    [134] Leal-Junior A, Frizera A, Pontes M J et al. Dynamic mechanical analysis on fused polymer optical fibers: towards sensor applications[J]. Optics Letters, 43, 1754-1757(2018).

    [135] Díaz C A R, Marques C A F, Domingues M F F et al. A cost-effective edge-filter based FBG interrogator using catastrophic fuse effect micro-cavity interferometers[J]. Measurement, 124, 486-493(2018).

    [136] Xiao Q R, Tian J D, Li D et al. An efficient non-invasive method to fabricate in-fiber microcavities using a continuous-wave laser[J]. IEEE Photonics Technology Letters, 32, 573-576(2020).

    [137] Hall J M M, François A, Afshar V S et al. Determining the geometric parameters of microbubble resonators from their spectra[J]. Journal of the Optical Society of America B, 34, 44-51(2016).

    [138] Zhang H W, Zhou P, Wang X L et al. Simulation of fiber optical discharge effect of double cladding fiber[J]. Acta Optica Sinica, 33, 0706015(2013).

    Jiading Tian, Qirong Xiao, Dan Li, Zheng Zhang, Haoyu Yin, Ping Yan, Mali Gong. Fiber Fuse Damage Effect in Fiber Lasers: A Review[J]. Chinese Journal of Lasers, 2021, 48(15): 1501005
    Download Citation