• Journal of Infrared and Millimeter Waves
  • Vol. 36, Issue 3, 321 (2017)
CHEN Zhe-Geng*, XU Xiang-Dong, GU Yu, AO Tian-Hong, LI Xin-Rong, DAI Ze-Lin, SUN Ming-Hui, JIANG Ya-Dong, LIAN Yu-Xiang, and WANG Fu
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.11972/j.issn.1001-9014.2017.03.013 Cite this Article
    CHEN Zhe-Geng, XU Xiang-Dong, GU Yu, AO Tian-Hong, LI Xin-Rong, DAI Ze-Lin, SUN Ming-Hui, JIANG Ya-Dong, LIAN Yu-Xiang, WANG Fu. Response mechanism and properties of spiral-shaped metamaterial absorbers[J]. Journal of Infrared and Millimeter Waves, 2017, 36(3): 321 Copy Citation Text show less

    Abstract

    Novel spiral-shaped metamaterial absorbers (MAs) were designed. Different from the traditional MAs, the THz responses of the as-designed MAs can be effectively adjusted by altering the number of the spirals and their locations, in which the functional materials and their thicknesses remain unchanged. Results reveal that the response frequencies obtained by CST simulations agree well with those theoretically estimated by standing wave formula, suggesting high predictability of the response frequency for such MAs. In order to better understand the response mechanism of the spiral-shaped MAs, ring-shaped and split ring-shaped MAs were simultaneously investigated. Simulation results indicate that these MAs exhibit some similar response properties. However, different from the ring-shaped and split ring-shaped MAs, the as-designed spiral-shaped MAs exhibit stronger coupling effect and easier adjustment, largely due to the continuous alteration in the spiral radius for the latter. These results are helpful for promoting the theoretical study and design of metamaterials.
    CHEN Zhe-Geng, XU Xiang-Dong, GU Yu, AO Tian-Hong, LI Xin-Rong, DAI Ze-Lin, SUN Ming-Hui, JIANG Ya-Dong, LIAN Yu-Xiang, WANG Fu. Response mechanism and properties of spiral-shaped metamaterial absorbers[J]. Journal of Infrared and Millimeter Waves, 2017, 36(3): 321
    Download Citation