• Infrared and Laser Engineering
  • Vol. 48, Issue 3, 306001 (2019)
Wang Weidong*, Wen Ming, Wang Diankai, and Li Chao
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/irla201948.0306001 Cite this Article
    Wang Weidong, Wen Ming, Wang Diankai, Li Chao. Study on the flow characteristics of interaction of the laser induced plasma hot core and shock wave[J]. Infrared and Laser Engineering, 2019, 48(3): 306001 Copy Citation Text show less
    References

    [1] Wright K, Washbum A, Jordan J, et al. Measurement technology for use in active flow control[C]//22th Areodynamic Measurement Technology & Ground Testing Conference, AIAA, 2002: 2705.

    [2] Udagawa K, Kawaguchi K, Saito S, et al. Experimental study on supersonic flow control by MHD interaction[C]// 39th Plasmadynamics& Lasers Conference, AIAA, 2008:4222.

    [3] Shneider M N, Macheret S O, Zaidi S H, et al. Steady and unsteady supersonic flow control with energy addition[C]// 34th Plasmadynamics and Lasers Conference, AIAA, 2003:3862.

    [4] Miles R B, Macheret S O, Shneider M N, et al. Plasma-enhanced hypersonic performance enabled by MHD power extraction[C]//43th Aerospace Sciences Meeting and Exhibit, AIAA, 2005: 0561.

    [5] David M. Wie V, Nedungadi A. Plasma aerodynamic flow control for hypersonic inlets[C]//40th Joint Propulsion Conference, AIAA, 2004: 4129.

    [6] Kremeyer K, Sebastian K, Shu C W. Computational study of shock mitigation and drag reduction by pulsed energy lines[J]. AIAA Journal, 2006, 44(8): 1720-1731.

    [7] Guvernyuk S V, Samoilov A B. Control of supersonic flow around bodies by means of a pulsed heat source[J]. Tech Phys Lett, 1997, 23(5): 333-336.

    [8] Oliveira C, Minucci M A, Toro P G, et al. Bow shock wave mitigation by laser-plasma energy addition in hypersonic flow[J]. Journal of Spacecraft and Rockets, 2008, 45(5): 921-927.

    [9] Hong Junwu, Chen Xiaodong, Zhang Yulun, et al. The primary numerical research of active control technology in flow [J]. Acta Aerodynamica Sinica, 2005, 23(4): 402-407.(in Chinese)

    [10] Minucci M A S, Chanes J B, Myrabo L N, et al. Investigation of a laser-supported directed-energy "air spike" in hypersonic flow[J]. Journal of Spacecraft and Rockets, 2003, 40(1): 133-136.

    [11] Oliveira A C, Minucci M A S, Toro P G P, et al. Schlieren visualization technique applied to the study of laser-induced breakdown in low density hypersonic flow[C]//Beamed Energy Propulsion: Fourth International Symposium on Beamed Energy Propulsion, AIP Publishing, 2006, 830(1): 504-509.

    [12] Oliveira A C, Minucci M A, Myrabo L N, et al. Bow shock wave mitigation by laser-plasma energy addition in hypersonic flow[J]. Journal of Spacecraft and Rockets, 2008, 45(5): 921-927.

    [13] Sasoh A, Kim J H, Yamashita K, et al. Fly by light power: improvement of supersonic aerodynamic performance with high-repetitive-rate energy depositions: examination of truncated cones[C]//AIAA Paper, 2011: 3999.

    [14] Schülein E, Zheltovodov A A, Pimonov E A, et al. Study of the bow shock interaction with laser-pulse-heated air bubbles[C]//AIAA Paper, 2009: 3568.

    [15] Ogino Y, Ohnishi N, Taguchi S, et al. Baroclinic vortex influence on wave drag reduction induced by pulse energy deposition[J]. Physics of Fluids, 2009, 21(6): 0661021.

    [16] Niederhaus J, Greenough A, Oakley G, et al. Computational parameter study for the three-dimensional shock-bubble interaction[J]. Journal of Fluid Mechanics, 2008, 594: 85-124.

    [17] Sasoh A, Sekiya Y, Sakai T, et al. Supersonic drag reduction with repetitive laser pulses through a blunt body[C]//AIAA Paper, 2009: 3585.

    [18] Azarova O A. Supersonic flow control using combined energy deposition[J]. Aerospace, 2015, 2(1): 118-134.

    [19] Murphy A. Transport coefficients of air, argon-air, nitrogen-air, and oxygen-air plasmas[J]. Plasma Chemistry and Plasma Processing, 1995, 15(2): 279-307.

    Wang Weidong, Wen Ming, Wang Diankai, Li Chao. Study on the flow characteristics of interaction of the laser induced plasma hot core and shock wave[J]. Infrared and Laser Engineering, 2019, 48(3): 306001
    Download Citation