• Acta Optica Sinica
  • Vol. 40, Issue 21, 2124002 (2020)
Chen Zhang1, Wenrui Xue1、*, Yuefei Chen1, Jing Zhang1, and Changyong Li2、3
Author Affiliations
  • 1College of Physics and Electronic Engineering, Shanxi University, Taiyuan, Shanxi 0 30006, China
  • 2State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan, Shanxi 0 30006, China
  • 3Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 0 30006, China
  • show less
    DOI: 10.3788/AOS202040.2124002 Cite this Article Set citation alerts
    Chen Zhang, Wenrui Xue, Yuefei Chen, Jing Zhang, Changyong Li. Ultra-Broadband Solar Absorber Based on Titanium Nitride and Titanium Dioxide[J]. Acta Optica Sinica, 2020, 40(21): 2124002 Copy Citation Text show less
    References

    [1] Liu Z Q, Liu G Q, Huang Z P et al. Ultra-broadband perfect solar absorber by an ultra-thin refractory titanium nitride meta-surface[J]. Solar Energy Materials and Solar Cells, 179, 346-352(2018).

    [2] Zhu L, Wang Y, Xiong G et al. Design and absorption characteristics of broadband nano-metamaterial solar absorber[J]. Acta Optica Sinica, 37, 0923001(2017).

    [3] Liu N, Mesch M, Weiss T et al. Infrared perfect absorber and its application as plasmonic sensor[J]. Nano Letters, 10, 2342-2348(2010).

    [4] Knight M W, Sobhani H, Nordlander P et al. Photodetection with active optical antennas[J]. Science, 332, 702-704(2011).

    [5] Landy N I, Sajuyigbe S, Mock J J et al. Perfect metamaterial absorber[J]. Physical Review Letters, 100, 207402(2008).

    [6] Lee B J, Wang L P, Zhang Z M. Coherent thermal emission by excitation of magnetic polaritons between periodic strips and a metallic film[J]. Optics Express, 16, 11328-11336(2008).

    [7] Fang Z Y, Wang Y M, Liu Z et al. Plasmon-induced doping of graphene[J]. ACS Nano, 6, 10222-10228(2012).

    [8] Shu S W, Li Z, Li Y Y. Triple-layer Fabry-Perot absorber with near-perfect absorption in visible and near-infrared regime[J]. Optics Express, 21, 25307(2013).

    [9] Gao W L, Shu J, Qiu C Y et al. Excitation of plasmonic waves in graphene by guided-mode resonances[J]. ACS Nano, 6, 7806-7813(2012).

    [10] Rephaeli E, Fan S H. Tungsten black absorber for solar light with wide angular operation range[J]. Applied Physics Letters, 92, 211107(2008).

    [11] Chester D, Bermel P, Joannopoulos J D et al. Design and global optimization of high-efficiency solar thermal systems with tungsten cermets[J]. Optics Express, 19, A245-A257(2011).

    [12] Zhou L, Tan Y L, Ji D X et al. Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation[J]. Science Advances, 2, e1501227(2016).

    [13] Wang Z L, Zhang Z M, Quan X J et al. A perfect absorber design using a natural hyperbolic material for harvesting solar energy[J]. Solar Energy, 159, 329-336(2018).

    [14] Ye Q, Chen M J, Cai W H. Numerically investigating a wide-angle polarization-independent ultra-broadband solar selective absorber for high-efficiency solar thermal energy conversion[J]. Solar Energy, 184, 489-496(2019).

    [15] Liu Z Q, Tang P, Liu X S et al. Truncated titanium/semiconductor cones for wide-band solar absorbers[J]. Nanotechnology, 30, 305203(2019).

    [16] Guler U, Ndukaife J C, Naik G V et al. Local heating with lithographically fabricated plasmonic titanium nitride nanoparticles[J]. Nano Letters, 13, 6078-6083(2013).

    [17] Diebold U. The surface science of titanium dioxide[J]. Surface Science Reports, 48, 53-229(2003).

    [18] Li W, Guler U, Kinsey N et al. Plasmonics: refractory plasmonics with titanium nitride: broadband metamaterial absorber[J]. Advanced Materials, 26, 7921(2014).

    [19] Wang J G, Zhang W L, Zhu M P et al. Broadband perfect absorber with titanium nitride nano-disk array[J]. Plasmonics, 10, 1473-1478(2015).

    [20] Catellani A, Calzolari A. Plasmonic properties of refractory titanium nitride[J]. Physical Review B, 95, 115145(2017).

    [21] Huo D W, Zhang J W, Wang Y C et al. Broadband perfect absorber based on TiN-nanocone metasurface[J]. Nanomaterials, 8, 485(2018).

    [22] Chen X, Xue W R, Zhao C et al. Ultra-broadband infrared absorber based on LiF and NaF[J]. Acta Optica Sinica, 38, 0123002(2018).

    [23] Ding F, Cui Y X, Ge X C et al. Ultra-broadband microwave metamaterial absorber[J]. Applied Physics Letters, 100, 103506(2012).

    [24] Minissale M, Pardanaud C, Bisson R et al. The temperature dependence of optical properties of tungsten in the visible and near-infrared domains: an experimental and theoretical study[J]. Journal of Physics D, 50, 455601(2017).

    [25] Naik G V, Schroeder J, Ni X J et al. Titanium nitride as a plasmonic material for visible and near-infrared wavelengths[J]. Optical Materials Express, 3, 1658-1659(2012).

    [26] Mosaddeq-Ur-rahman M, Yu G L, Krishna K M et al. Determination of optical constants of solgel-derived inhomogeneous TiO2 thin films by spectroscopic ellipsometry and transmission spectroscopy[J]. Applied Optics, 37, 691-697(1998).

    Chen Zhang, Wenrui Xue, Yuefei Chen, Jing Zhang, Changyong Li. Ultra-Broadband Solar Absorber Based on Titanium Nitride and Titanium Dioxide[J]. Acta Optica Sinica, 2020, 40(21): 2124002
    Download Citation