• Journal of Advanced Dielectrics
  • Vol. 12, Issue 5, 2250018 (2022)
M. E. Kutepov1、*, G. Ya. Karapetyan1, T. A. Minasyan1, V. E. Kaydashev1, I. V. Lisnevskaya2, K. G. Abdulvakhidov3, A. A. Kozmin1, and E. M. Kaidashev1
Author Affiliations
  • 1Laboratory of Nanomaterials, Southern Federal University, 200/1 Stachki Ave., 344090 Rostov-on-Don, Russia
  • 2Department of Chemistry, Southern Federal University, 7 Zorge St., 344090 Rostov-on-Don, Russia
  • 3Smart Materials Research Institute, Southern Federal University, 178/24 Sladkova St., 344090 Rostov-on-Don, Russia
  • show less
    DOI: 10.1142/S2010135X22500187 Cite this Article
    M. E. Kutepov, G. Ya. Karapetyan, T. A. Minasyan, V. E. Kaydashev, I. V. Lisnevskaya, K. G. Abdulvakhidov, A. A. Kozmin, E. M. Kaidashev. Embedding epitaxial VO2 film with quality metal-insulator transition to SAW devices[J]. Journal of Advanced Dielectrics, 2022, 12(5): 2250018 Copy Citation Text show less
    References

    [3] G. Y. Karapetyan, V. E. Kaydashev, D. A. Zhilin, M. E. Kutepov, T. A. Minasyan, E. M. Kaidashev. A surface acoustic wave impedance-loaded high sensitivity sensor with wide dynamic range for ultraviolet light detection. Sens. Actuat. A Phys., 296, 70(2019).

    [4] Q. Fu, H. Stab, W. J. Fischer. Wireless passive SAW sensors using single-electrode-type IDT structures as programmable reflectors. Sens. Actuat. A Phys., 122, 203(2005).

    [5] L. Reindl. Theory and application of passive saw radio transponders as sensors. IEEE Trans. Ultrason. Ferroelectr. Frequency Control, 45, 1281(1998).

    [6] W. Luo, Q. Fu, J. Wang, Y. Wang, D. Zhou. Theoretical Analysis of Wireless Passive Impedance-Loaded SAW Sensors. IEEE Sensors Journal, 9, 1778(2009).

    [7] A. Cavalleri, Th. Dekorsy, H. H. W. Chong, J. C. Kieffer, R. W. Schoenlein. Phys. Rev. B, 70, 161102(R)(2004).

    [8] M. Borek, F. Qian, V. Nagabushnam, R. K. Singh. Pulsed laser deposition of oriented VO2 thin films on R-cut sapphire substrates. Appl. Phys. Lett., 63, 3288(1993).

    [9] D. Y. Lei, K. Appavoo, F. Ligmajer, Y. Sonnefraud, R. F. Haglund, S. A. Maier. Optically-triggered nanoscale memory effect in a hybrid plasmonic-phase changing nanostructure. ACS Photon., 2, 1306(2015).

    [10] J. Wei, Z. Wang, W. Chen, D. H. Cobden. New aspects of the metal-insulator transition in single-domain vanadium dioxide nanobeams. Nat. Nanotechnol., 4, 420(2009).

    [11] M. M. Qazilbash, Z. Q. Li, V. Podzorov, M. Brehm, F. Keilmann, B. G. Chae, H. T. Kim, D. N. Basov. Electrostatic modification of infrared response in gated structures based on VO2. Appl. Phys. Lett., 92, 241906(2008).

    [12] V. S. Aliev, S. G. Bortnikov, I. A. Badmaeva. Anomalous large electrical capacitance of planar microstructures with vanadium dioxide films near the insulator-metal phase transition. Appl. Phys. Lett., 104, 132906(2014).

    [13] J. M. Wu, W. E. Chang. Ultrahigh responsivity and external quantum efficiency of an ultraviolet-light photodetector based on a single VO2 microwire. ACS Appl. Mater. Interfaces, 6, 14286(2014).

    [14] Q. He, Sh. Sun, L. Zhou. Tunable/reconfigurable metasurfaces: Physics and applications. AAAS Res., 2019, 1849272(2019).

    [15] Z. Song, A. Chen, J. Zhang. Terahertz switching between broadband absorption and narrowband absorption. Opt. Exp., 28, 2037(2020).

    [16] N. A. Charipar, H. Kim, S. A. Mathews, A. Piqué. Broadband terahertz generation using the semiconductor-metal transition in VO2. AIP Adv., 6, 015113(2016).

    [17] A. Lafort, H. Kebaili, S. Goumri-Said, O. Deparis, R. Cloots, J. De Coninck, M. Voué, F. Mirabella, F. Maseri, S. Lucas. Optical properties of thermochromic VO2 thin films on stainless steel: Experimental and theoretical studies. Thin Solid Films, 519, 3283(2011).

    [18] J. B. K. Kana, J. M. Ndjaka, P. O. Ateba, B. D. Ngom, N. Manyala, O. Nemraoui, A. C. Beye, M. Maaza. Thermochromic VO2 thin films synthesized by rf-inverted cylindrical magnetron sputtering. Appl. Surf. Sci., 254, 3959(2008).

    [19] T. Driscoll, H.T. Kim, B. G. Chae, M. Di Ventra, D. N. Basov. Phase-transition driven memristive system. Appl. Phys. Lett., 95, 043503(2009).

    [20] S. Mathur, T. Ruegamer, I. Grobelsek. Phase-selective CVD of vanadium oxide nanostructures. Chem. Vap. Depos., 13, 42(2007).

    [21] M. B. Sahana, M. S. Dharmaprakash, S. A. Shivashankar. Microstructure and properties of VO2 thin films deposited by MOCVD from vanadyl acetylacetonate. J. Mater. Chem., 12, 333(2002).

    [22] L. Dillemans, R. R. Lieten, M. Menghini, T. Smets, J. W. Seo, J. P. Locquet. Correlation between strain and the metal-insulator transition in epitaxial V2O3 thin films grown by molecular beam epitaxy. Thin Solid Films, 520, 4730(2012).

    [23] A. D. Rata, A. R. Chezan, M. W. Haverkort, H. H. Hsieh, H. J. Lin, C. T. Chen, L. H. Tjeng, T. Hibma. Growth and properties of strained VOx thin films with controlled stoichiometry. Phys. Rev. B. Condens. Matter Mater. Phys., 69, 075404(2004).

    [24] S. Fan, L. Fan, Q. Li, J. Liu, B. Ye. The identification of defect structures for oxygen pressure dependent VO2 crystal films. Appl. Surf. Sci., 321, 464(2014).

    [25] B. J. Kim, Y. W. Lee, S. Choi, B. G. Chae, H. T. Kim. Analysis of the surface morphology and the resistance of VO2 thin films on M-plane Al2O3. J. Korean Phys. Soc., 50, 653(2007).

    [26] D. H. Kim, H. S. Kwok. Pulsed laser deposition of VO2 thin films. Appl. Phys. Lett., 65, 3188(1994).

    [27] J. Galy, G. Miehe. Ab initio structures of (M2) and (M3) VO2 high pressure phases. Solid State Sci., 1, 433(1999).

    M. E. Kutepov, G. Ya. Karapetyan, T. A. Minasyan, V. E. Kaydashev, I. V. Lisnevskaya, K. G. Abdulvakhidov, A. A. Kozmin, E. M. Kaidashev. Embedding epitaxial VO2 film with quality metal-insulator transition to SAW devices[J]. Journal of Advanced Dielectrics, 2022, 12(5): 2250018
    Download Citation