• Frontiers of Optoelectronics
  • Vol. 13, Issue 2, 91 (2020)
Petri MUSTONEN*, David M. A. MACKENZIE, and Harri LIPSANEN
Author Affiliations
  • Department of Electronics and Nanoengineering, Aalto University, Aalto FI-00076, Finland
  • show less
    DOI: 10.1007/s12200-020-1011-5 Cite this Article
    Petri MUSTONEN, David M. A. MACKENZIE, Harri LIPSANEN. Review of fabrication methods of large-area transparent graphene electrodes for industry[J]. Frontiers of Optoelectronics, 2020, 13(2): 91 Copy Citation Text show less
    References

    [1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A. Electric field effect in atomically thin carbon films. Science, 2004, 306(5696): 666–669

    [2] Peierls R. Quelques propriétés typiques des corps solides. Annales de l'Institut Henri Poincaré, 1935, 5(3): 177–222

    [3] Landau L D. On the theory of phase transitions. Ukrainian Journal of Physical, 1937, 11: 19–32

    [4] Mermin N D. Crystalline order in two dimensions. Physical Review, 1968, 176(1): 250–254

    [5] Nelson D R, Peliti L. Fluctuations in membranes with crystalline and hexatic order. Journal de Physique (Paris), 1988, 49(1): 139

    [6] Banszerus L, Schmitz M, Engels S, Goldsche M, Watanabe K, Taniguchi T, Beschoten B, Stampfer C. Ballistic transport exceeding 28 mm in CVD grown graphene. Nano Letters, 2016, 16(2): 1387–1391

    [7] Mayorov A S, Gorbachev R V, Morozov S V, Britnell L, Jalil R, Ponomarenko L A, Blake P, Novoselov K S, Watanabe K, Taniguchi T, Geim A K. Micrometer-scale ballistic transport in encapsulated graphene at room temperature. Nano Letters, 2011, 11(6): 2396–2399

    [8] Wang L, Meric I, Huang P Y, Gao Q, Gao Y, Tran H, Taniguchi T, Watanabe K, Campos L M, Muller D A, Guo J, Kim P, Hone J, Shepard K L, Dean C R. One-dimensional electrical contact to a two-dimensional material. Science, 2013, 342(6158): 614–617

    [9] wang E H, Adam S, Sarma S D. Carrier transport in twodimensional graphene layers. Physical Review Letters, 2007, 98 (18): 186806

    [10] Lee G H, Cooper R C, An S J, Lee S, van der Zande A, Petrone N, Hammerberg A G, Lee C, Crawford B, Oliver W, Kysar JW, Hone J. High-strength chemical-vapor-deposited graphene and grain boundaries. Science, 2013, 340(6136): 1073–1076

    [11] Xu J, Yuan G, Zhu Q, Wang J, Tang S, Gao L. Enhancing the strength of graphene by a denser grain boundary. ACS Nano, 2018, 12(5): 4529–4535

    [12] Lee C, Wei X, Kysar J W, Hone J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 2008, 321(5887): 385–388

    [13] Nair R R, Blake P, Grigorenko A N, Novoselov K S, Booth T J, Stauber T, Peres NMR, Geim A K. Fine structure constant defines visual transparency of graphene. Science, 2008, 320(5881): 1308

    [14] Balandin A A. Thermal properties of graphene and nanostructured carbon materials. Nature Materials, 2011, 10(8): 569–581

    [15] Zheng Q, Ip W H, Lin X, Yousefi N, Yeung K K, Li Z, Kim J K. Transparent conductive films consisting of ultralarge graphene sheets produced by Langmuir-Blodgett assembly. ACS Nano, 2011, 5(7): 6039–6051

    [16] Pham V P, Mishra A, Young Yeom G. The enhancement of Hall mobility and conductivity of CVD graphene through radical doping and vacuum annealing. RSC Advances, 2017, 7(26): 16104–16108

    [17] Suzuki S, Yoshimura M. Chemical stability of graphene coated silver substrates for surface-enhanced raman scattering. Scientific Reports, 2017, 7(1): 14851

    [18] Pisana S, Lazzeri M, Casiraghi C, Novoselov K S, Geim A K, Ferrari A C, Mauri F. Breakdown of the adiabatic Born- Oppenheimer approximation in graphene. Nature Materials, 2007, 6(3): 198–201

    [19] Novoselov K S, Jiang Z, Zhang Y, Morozov S V, Stormer H L, Zeitler U, Maan J C, Boebinger G S, Kim P, Geim A K. Roomtemperature quantum Hall effect in graphene. Science, 2007, 315 (5817): 1379

    [20] Zhang Y, Tan Y W, Stormer H L, Kim P. Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature, 2005, 438(7065): 201–204

    [21] Bolotin K I, Ghahari F, Shulman M D, Stormer H L, Kim P. Observation of the fractional quantum Hall effect in graphene. Nature, 2009, 462(7270): 196–199

    [22] Qiao Z, Yang S A, Feng W, Tse W K, Ding J, Yao Y, Wang J, Niu Q. Quantum anomalous Hall effect in graphene from Rashba and exchange effects. Physical Review B: Condensed Matter and Materials Physics, 2010, 82(16): 161414

    [23] Levy D, Castellón E. Transparent Conductive Materials: Materials, Synthesis, Characterization, Applications. New York: John Wiley & Sons, 2018

    [24] Hu Y, Diao X, Wang C, Hao W, Wang T. Effects of heat treatment on properties of ITO films prepared by rf magnetron sputtering. Vacuum, 2004, 75(2): 183–188

    [25] Alzoubi K, Hamasha M M, Lu S, Sammakia B. Bending fatigue study of sputtered ITO on flexible substrate. Journal of Display Technology, 2011, 7(11): 593–600

    [26] Im H G, Jeong S, Jin J, Lee J, Youn D Y, KooWT, Kang S B, Kim H J, Jang J, Lee D, Kim H K, Kim I D, Lee J Y, Bae B S. Hybrid crystalline-ITO/metal nanowire mesh transparent electrodes and their application for highly flexible perovskite solar cells. NPG Asia Materials, 2016, 8(6): e282

    [27] Park S H, Lee S J, Lee J H, Kal J, Hahn J, Kim H K. Large area rollto- roll sputtering of transparent ITO/Ag/ITO cathodes for flexible inverted organic solar cell modules. Organic Electronics, 2016, 30: 112–121

    [28] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A. Electric field effect in atomically thin carbon films. Science, 2004, 306(5696): 666–669

    [29] Suslick K S. Sonochemistry. Science, 1990, 247(4949): 1439– 1445

    [30] Yi M, Shen Z. A review on mechanical exfoliation for the scalable production of grapheme. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2015, 3(22): 11700–11715

    [31] Chen X, Dobson J F, Raston C L. Vortex fluidic exfoliation of graphite and boron nitride. Chemical Communications (Cambridge), 2012, 48(31): 3703–3705

    [32] Paton K R, Varrla E, Backes C, Smith R J, Khan U, O’Neill A, Boland C, Lotya M, Istrate O M, King P, Higgins T, Barwich S, May P, Puczkarski P, Ahmed I, Moebius M, Pettersson H, Long E, Coelho J, O’Brien S E, McGuire E K, Sanchez BM, Duesberg G S, McEvoy N, Pennycook T J, Downing C, Crossley A, Nicolosi V, Coleman J N. Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids. Nature Materials, 2014, 13(6): 624–630

    [33] Lin Z, Karthik P S, Hada M, Nishikawa T, Hayashi Y. Simple technique of exfoliation and dispersion of multilayer graphene from natural graphite by ozone-assisted sonication. Nanomaterials (Basel, Switzerland), 2017, 7(6): 125

    [34] Blake P, Brimicombe P D, Nair R R, Booth T J, Jiang D, Schedin F, Ponomarenko L A, Morozov S V, Gleeson H F, Hill EW, Geim A K, Novoselov K S. Graphene-based liquid crystal device. Nano Letters, 2008, 8(6): 1704–1708

    [35] Hernandez Y, Nicolosi V, Lotya M, Blighe F M, Sun Z, De S, McGovern I T, Holland B, Byrne M, Gun’Ko Y K, Boland J J, Niraj P, Duesberg G, Krishnamurthy S, Goodhue R, Hutchison J, Scardaci V, Ferrari A C, Coleman J N. High-yield production of graphene by liquid-phase exfoliation of graphite. Nature Nanotechnology, 2008, 3(9): 563–568

    [36] Bunch J S, Yaish Y, Brink M, Bolotin K, McEuen P L. Coulomb oscillations and Hall effect in quasi-2D graphite quantum dots. Nano Letters, 2005, 5(2): 287–290

    [37] Hernandez Y, Lotya M, Rickard D, Bergin S D, Coleman J N. Measurement of multicomponent solubility parameters for graphene facilitates solvent discovery. Langmuir, 2010, 26(5): 3208– 3213

    [38] Bergin S D, Nicolosi V, Streich P V, Giordani S, Sun Z, Windle A H, Ryan P, Niraj N P P, Wang Z T T, Carpenter L, Blau W J, Boland J J, Hamilton J P, Coleman J N. Towards solutions of single-walled carbon nanotubes in common solvents. Advanced Materials, 2008, 20(10): 1876–1881

    [39] Coleman J N. Liquid-phase exfoliation of nanotubes and graphene. Advanced Functional Materials, 2009, 19(23): 3680–3695

    [40] Liang Y T, Hersam M C. Highly concentrated graphene solutions via polymer enhanced solvent exfoliation and iterative solvent exchange. Journal of the American Chemical Society, 2010, 132 (50): 17661–17663

    [41] Park K H, Kim B H, Song S H, Kwon J, Kong B S, Kang K, Jeon S. Exfoliation of non-oxidized graphene flakes for scalable conductive film. Nano Letters, 2012, 12(6): 2871–2876

    [42] Toma?evi?-Ili? T, Pe?i? J, Milo?evi? I, Vujin J, Matkovi? A, Spasenovi? M, Gaji? R. Transparent and conductive films from liquid phase exfoliated graphene. Optical and Quantum Electronics, 2016, 48(6): 319

    [43] Majee S, Song M, Zhang S L, Zhang Z B. Scalable inkjet printing of shear-exfoliated graphene transparent conductive films. Carbon, 2016, 102: 51–57

    [44] Narayan R, Kim S O. Surfactant mediated liquid phase exfoliation of graphene. Nano Convergence, 2015, 2(1): 20

    [45] Liu N, Luo F, Wu H, Liu Y, Zhang C, Chen J. One-step ionicliquid- assisted electrochemical synthesis of ionic-liquid-functionalized graphene sheets directly from graphite. Advanced Functional Materials, 2008, 18(10): 1518–1525

    [46] Khan U, O’Neill A, Lotya M, De S, Coleman J N. Highconcentration solvent exfoliation of graphene. Small, 2010, 6(7): 864–871

    [47] Li J, Yan H, Dang D, Wei W, Meng L. Salt and water co-assisted exfoliation of graphite in organic solvent for efficient and large scale production of high-quality graphene. Journal of Colloid and Interface Science, 2019, 535: 92–99

    [48] Zhang M, Parajuli R R, Mastrogiovanni D, Dai B, Lo P, Cheung W, Brukh R, Chiu P L, Zhou T, Liu Z, Garfunkel E, He H. Production of graphene sheets by direct dispersion with aromatic healing agents. Small, 2010, 6(10): 1100–1107

    [49] Liu L, Rim K T, Eom D, Heinz T F, Flynn GW. Direct observation of atomic scale graphitic layer growth. Nano Letters, 2008, 8(7): 1872–1878

    [50] Tung T T, Yoo J, Alotaibi F K, Nine M J, Karunagaran R, Krebsz M, Nguyen G T, Tran D N H, Feller J F, Losic D. Graphene oxideassisted liquid phase exfoliation of graphite into graphene for highly conductive film and electromechanical sensors. ACS Applied Materials & Interfaces, 2016, 8(25): 16521–16532

    [51] Majee S, Song M, Zhang S L, Zhang Z B. Scalable inkjet printing of shear-exfoliated graphene transparent conductive films. Carbon, 2016, 102: 51–57

    [52] Shin D W, Barnes M D, Walsh K, Dimov D, Tian P, Neves A I S, Wright C D, Yu S M, Yoo J B, Russo S, Craciun M F. A new facile route to flexible and semi-transparent electrodes based on water exfoliated graphene and their single-electrode triboelectric nanogenerator. Advanced Materials, 2018, 30(39): 1802953

    [53] Fukushima T, Aida T. Ionic liquids for soft functional materials with carbon nanotubes. Chemistry (Weinheim an der Bergstrasse, Germany), 2007, 13(18): 5048–5058

    [54] Su C Y, Lu A Y, Xu Y, Chen F R, Khlobystov A N, Li L J. Highquality thin graphene films from fast electrochemical exfoliation. ACS Nano, 2011, 5(3): 2332–2339

    [55] Liu J, Notarianni M, Will G, Tiong V T, Wang H, Motta N. Electrochemically exfoliated graphene for electrode films: effect of graphene flake thickness on the sheet resistance and capacitive properties. Langmuir, 2013, 29(43): 13307–13314

    [56] Parvez K, Wu Z S, Li R, Liu X, Graf R, Feng X, Müllen K. Exfoliation of graphite into graphene in aqueous solutions of inorganic salts. Journal of the American Chemical Society, 2014, 136(16): 6083–6091

    [57] Zhang Y, Xu Y. Simultaneous electrochemical dual-electrode exfoliation of graphite toward scalable production of high-quality graphene. Advanced Functional Materials, 2019, 29(37): 1902171

    [58] Roscher S, Hoffmann R, Prescher M, Knittel P, Ambacher O. High voltage electrochemical exfoliation of graphite for high-yield graphene production. RSC Advances, 2019, 9: 29305–29311

    [59] Hummers W S Jr, Offeman R E. Preparation of graphitic oxide. Journal of the American Chemical Society, 1958, 80(6): 1339

    [60] Hirata M, Gotou T, Horiuchi S, Fujiwara M, Ohba M. Thin-film particles of graphite oxide 1: high-yield synthesis and flexibility of the particles. Carbon, 2004, 42(14): 2929–2937

    [61] Shahriary L, Athawale A A. Graphene oxide synthesized by using modified hummers approach. International Journal of Renewable Energy and Environmental Engineering, 2014, 2(1): 58–63

    [62] Dreyer D R, Todd A D, Bielawski C W. Harnessing the chemistry of graphene oxide. Chemical Society Reviews, 2014, 43(15): 5288–5301

    [63] Mattevi C, Eda G, Agnoli S, Miller S, Mkhoyan K A, Celik O, Mastrogiovanni D, Granozzi G, Garfunkel E, Chhowalla M. Evolution of electrical, chemical, and structural properties of transparent and conducting chemically derived graphene thin films. Advanced Functional Materials, 2009, 19(16): 2577–2583

    [64] Wang S J, Geng Y, Zheng Q, Kim J K. Fabrication of highly conducting and transparent graphene films. Carbon, 2010, 48(6): 1815–1823

    [65] Geng J, Jung H T. Porphyrin functionalized graphene sheets in aqueous suspensions: from the preparation of graphene sheets to highly conductive graphene films. Journal of Physical Chemistry C, 2010, 114(18): 8227–8234

    [66] Pham V H, Cuong T V, Hur S H, Shin E W, Kim J S, Chung J S, Kim E J. Fast and simple fabrication of a large transparent chemically-converted graphene film by spray-coating. Carbon, 2010, 48(7): 1945–1951

    [67] Alahbakhshi M, Fallahi A, Mohajerani E, Fathollahi M R, Taromi F A, Shahinpoor M. High-performance Bi-stage process in reduction of graphene oxide for transparent conductive electrodes. Optical Materials, 2017, 64: 366–375

    [68] Becerril H A, Mao J, Liu Z, Stoltenberg R M, Bao Z, Chen Y. Evaluation of solution-processed reduced graphene oxide films as transparent conductors. ACS Nano, 2008, 2(3): 463–470

    [69] Wang J, Liang M, Fang Y, Qiu T, Zhang J, Zhi L. Rod-coating: towards large-area fabrication of uniform reduced graphene oxide films for flexible touch screens. Advanced Materials, 2012, 24(21): 2874–2878

    [70] De S, Coleman J N. Are there fundamental limitations on the sheet resistance and transmittance of thin graphene films? ACS Nano, 2010, 4(5): 2713–2720

    [71] Lotya M, Hernandez Y, King P J, Smith R J, Nicolosi V, Karlsson L S, Blighe F M, De S, Wang Z, McGovern I T, Duesberg G S, Coleman J N. Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions. Journal of the American Chemical Society, 2009, 131(10): 3611–3620

    [72] De S, King P J, Lotya M, O’Neill A, Doherty E M, Hernandez Y, Duesberg G S, Coleman J N. Flexible, transparent, conducting films of randomly stacked graphene from surfactant-stabilized, oxide-free graphene dispersions. Small, 2010, 6(3): 458–464

    [73] Au C T, Ng C F, Liao M S. Methane dissociation and syngas formation on Ru, Os, Rh, Ir, Pd, Pt, Cu, Ag, and Au: a theoretical study. Journal of Catalysis, 1999, 185(1): 12–22

    [74] Nandamuri G, Roumimov S, Solanki R. Chemical vapor deposition of graphene films. Nanotechnology, 2010, 21(14): 145604

    [75] An H, Lee W J, Jung J. Graphene synthesis on Fe foil using thermal CVD. Current Applied Physics, 2011, 11(4): S81–S85

    [76] Cushing GW, Johánek V, Navin J K, Harrison I. Graphene growth on Pt(111) by ethylene chemical vapor deposition at surface temperatures near 1000 K. Journal of Physical Chemistry C, 2015, 119(9): 4759–4768

    [77] Imamura G, Saiki K. Synthesis of nitrogen-doped graphene on Pt (111) by chemical vapor deposition. Journal of Physical Chemistry C, 2011, 115(20): 10000–10005

    [78] Zhao L, Rim K T, Zhou H, He R, Heinz T F, Pinczuk A, Flynn G W, Pasupathy A N. Influence of copper crystal surface on the CVD growth of large area monolayer graphene. Solid State Communications, 2011, 151(7): 509–513

    [79] Sun Z, Yan Z, Yao J, Beitler E, Zhu Y, Tour J M. Growth of graphene from solid carbon sources. Nature, 2010, 468(7323): 549–552

    [80] Virojanadara C, Syv?jarvi M, Yakimova R, Johansson L I, Zakharov A A, Balasubramanian T. Homogeneous large-area graphene layer growth on 6 H-SiC(0001). Physical Review B: Condensed Matter and Materials Physics, 2008, 78(24): 245403

    [81] Wassei J K, Mecklenburg M, Torres J A, Fowler J D, Regan B C, Kaner R B,Weiller B H. Chemical vapor deposition of graphene on copper from methane, ethane and propane: evidence for bilayer selectivity. Small, 2012, 8(9): 1415–1422

    [82] Wan X, Chen K, Liu D, Chen J, Miao Q, Xu J. High-quality largearea graphene from dehydrogenated polycyclic aromatic hydrocarbons. Chemistry of Materials, 2012, 24(20): 3906–3915

    [83] Backes C, Abdelkader A M, Alonso C, Andrieux-Ledier A, Arenal R, Azpeitia J, Balakrishnan N, Banszerus L, Barjon J, Bartali R, Bellani S, Berger C, Berger R, Bernal Ortega M M, Bernard C, Beton P H, Beyer A, Bianco A, B?ggild P, Bonaccorso F, Barin G B, Botas C, Bueno R A, Carriazo D, Castellanos-Gomez A, Christian M, Ciesielski A, Ciuk T, ColeMT, Coleman J, Coletti C, Crema L, Cun H, Dasler D, Fazio D D, Díez N, Drieschner S, Duesberg G S, Fasel R, Feng X, Fina A, Forti S, Galiotis C, Garberoglio G, García J M, Garrido J A, Gibertini M, G?lzh?user A, Gómez J, Greber T, Hauke F, Hemmi A, Hernandez-Rodriguez I, Hirsch A, Hodge S A, Huttel Y, Jepsen P U, Jimenez I, Kaiser U, Kaplas T, Kim H, Kis A, Papagelis K, Kostarelos K, Krajewska A, Lee K, Li C, Lipsanen H, Liscio A, Lohe M R, Loiseau A, Lombardi L, López M F, Martin O, Martín C, Martínez L, Martin- Gago J A, Martínez J I, Marzari N, Mayoral A, Melucci M J, Méndez J, Merino C, Merino P, Meyer A P, Miniussi E, Miseikis V, Mishra N, Morandi V, Munuera C, Mu?oz R, Nolan H, Ortolani L, Ott A K, Palacio I, Palermo V, Parthenios J, Pasternak I, Patane A, Prato M, Prevost H, Prudkovskiy V, Pugno N, Rojo T, Rossi A, Ruffieux P, Samorì P, Schué L, Setijadi E, Seyller T, Speranza G, Stampfer C, Stenger I, Strupinski W, Svirko Y, Taioli S, Teo K B K, Testi M, Tomarchio F, Tortello M, Treossi E, Turchanin A, Vazquez E, Villaro E, Whelan P R, Xia Z, Yakimova R, Yang S, Yazdi G R, Yim C, Yoon D, Zhang X, Zhuang X, Colombo L, Ferrari A C, Garcia-Hernandez M. Production and processing of graphene and related materials. 2D Materials, 2020, 7(2): 022001

    [84] Losurdo M, Giangregorio M M, Capezzuto P, Bruno G. Graphene CVD growth on copper and nickel: role of hydrogen in kinetics and structure. Physical Chemistry Chemical Physics, 2011, 13(46): 20836–20843

    [85] Gajewski G, Pao C W. Ab initio calculations of the reaction pathways for methane decomposition over the Cu (111) surface. Journal of Chemical Physics, 2011, 135(6): 064707

    [86] Kim H, Mattevi C, Calvo M R, Oberg J C, Artiglia L, Agnoli S, Hirjibehedin C F, Chhowalla M, Saiz E. Activation energy paths for graphene nucleation and growth on Cu. ACS Nano, 2012, 6(4): 3614–3623

    [87] Xing S, Wu W, Wang Y, Bao J, Pei S S. Kinetic study of graphene growth: temperature perspective on growth rate and film thickness by chemical vapor deposition. Chemical Physics Letters, 2013, 580: 62–66

    [88] Colombo L, Li X, Han B, Magnuson C, Cai W, Zhu Y, Ruoff R S. Growth kinetics and defects of CVD graphene on Cu. ECS Transactions, 2010, 28: 109–114

    [89] Hao Y, Bharathi M S, Wang L, Liu Y, Chen H, Nie S, Wang X, Chou H, Tan C, Fallahazad B, Ramanarayan H, Magnuson C W, Tutuc E, Yakobson B I, McCarty K F, Zhang YW, Kim P, Hone J, Colombo L, Ruoff R S. The role of surface oxygen in the growth of large single-crystal graphene on copper. Science, 2013, 342(6159): 720–723

    [90] Shu H, Chen X, Tao X, Ding F. Edge structural stability and kinetics of graphene chemical vapor deposition growth. ACS Nano, 2012, 6(4): 3243–3250

    [91] Shibuta Y, Arifin R, Shimamura K, Oguri T, Shimojo F, Yamaguchi S. Low reactivity of methane on copper surface during graphene synthesis via CVD process: Ab initio molecular dynamics simulation. Chemical Physics Letters, 2014, 610–611: 33–38

    [92] Liao M S, Au C T, Ng C F. Methane dissociation on Ni, Pd, Pt and Cu metal (111) surfaces—a theoretical comparative study. Chemical Physics Letters, 1997, 272(5–6): 445–452

    [93] Guéret C, Daroux M, Billaud F. Methane pyrolysis: thermodynamics. Chemical Engineering Science, 1997, 52(5): 815–827

    [94] Vi?es F, Lykhach Y, Staudt T, Lorenz MP A, Papp C, Steinrück H P, Libuda J, Neyman K M, G?rling A. Methane activation by platinum: critical role of edge and corner sites of metal nanoparticles. Chemistry (Weinheim an der Bergstrasse, Germany), 2010, 16(22): 6530–6539

    [95] Loginova E, Bartelt N C, Feibelman P J, McCarty K F. Evidence for graphene growth by C cluster attachment. New Journal of Physics, 2008, 10(9): 093026

    [96] Loginova E, Bartelt N C, Feibelman P J, McCarty K F. Factors influencing graphene growth on metal surfaces. New Journal of Physics, 2009, 11(6): 063046

    [97] López G A, Mittemeijer E J. The solubility of C in solid Cu. Scripta Materialia, 2004, 51(1): 1–5

    [98] Kim K S, Zhao Y, Jang H, Lee S Y, Kim J M, Kim K S, Ahn J H, Kim P, Choi J Y, Hong B H. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature, 2009, 457(7230): 706–710

    [99] ai W, Piner R D, Zhu Y, Li X, Tan Z, Floresca H C, Yang C, Lu L, Kim M J, Ruoff R S. Synthesis of isotopically-labeled graphite films by cold-wall chemical vapor deposition and electronic properties of graphene obtained from such films. Nano Research, 2009, 2(11): 851–856

    [100] Wu P, Zhang W, Li Z, Yang J. Mechanisms of graphene growth on metal surfaces: theoretical perspectives. Small, 2014, 10(11): 2136–2150

    [101] Huang L, Chang Q H, Guo G L, Liu Y, Xie Y Q, Wang T, Ling B, Yang H F. Synthesis of high-quality graphene films on nickel foils by rapid thermal chemical vapor deposition. Carbon, 2012, 50(2): 551–556

    [102] Li H B, Page A J, Wang Y, Irle S, Morokuma K. Sub-surface nucleation of graphene precursors near a Ni(111) step-edge. Chemical Communications (Cambridge), 2012, 48(64): 7937– 7939

    [103] Verma V P, Das S, Lahiri I, Choi W. Large-area graphene on polymer film for flexible and transparent anode in field emission device. Applied Physics Letters, 2010, 96(20): 203108

    [104] Kalita G, Matsushima M, Uchida H, Wakita K, Umeno M. Graphene constructed carbon thin films as transparent electrodes for solar cell applications. Journal of Materials Chemistry, 2010, 20 (43): 9713–9717

    [105] Nagai Y, Sugime H, Noda S. 1.5 Minute-synthesis of continuous graphene films by chemical vapor deposition on Cu foils rolled in three dimensions. Chemical Engineering Science, 2019, 201: 319– 324

    [106] Bae S, Kim H, Lee Y, Xu X, Park J S, Zheng Y, Balakrishnan J, Lei T, Kim H R, Song Y I, Kim Y J, Kim K S, Ozyilmaz B, Ahn J H, Hong B H, Iijima S. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nature Nanotechnology, 2010, 5 (8): 574–578

    [107] Kim Y, Kim S, Lee W H, Kim H.Direct transfer of CVD-grown graphene onto eco-friendly cellulose film for highly sensitive gas sensor. Cellulose, 2020, 27: 1685–1693

    [108] Kim M, Shah A, Li C, Mustonen P, Susoma J, Manoocheri F, Riikonen J, Lipsanen H. Direct transfer of wafer-scale graphene films. 2D Materials, 2017, 4(3): 035004

    [109] Park I J, Kim T I, Yoon T, Kang S, Cho H, Cho N S, Lee J I, Kim T S, Choi S Y. Flexible and transparent graphene electrode architecture with selective defect decoration for organic lightemitting diodes. Advanced Functional Materials, 2018, 28(10): 1704435

    [110] Liang X, Sperling B A, Calizo I, Cheng G, Hacker C A, Zhang Q, Obeng Y, Yan K, Peng H, Li Q, Zhu X, Yuan H, Walker A R, Liu Z, Peng L M, Richter C A. Toward clean and crackless transfer of graphene. ACS Nano, 2011, 5(11): 9144–9153

    [111] Li X, Zhu Y, Cai W, Borysiak M, Han B, Chen D, Piner R D, Colombo L, Ruoff R S. Transfer of large-area graphene films for high-performance transparent conductive electrodes. Nano Letters, 2009, 9(12): 4359–4363

    [112] Gammelgaard L, Caridad J M, Cagliani A, Mackenzie D M A, Petersen D H, Booth T J, B?ggild P. Graphene transport properties upon exposure to PMMA processing and heat treatments. 2D Materials, 2014, 1(3): 035005

    [113] Chan J, Venugopal A, Pirkle A, McDonnell S, Hinojos D, Magnuson CW, Ruoff R S, Colombo L,Wallace R M, Vogel E M. Reducing extrinsic performance-limiting factors in graphene grown by chemical vapor deposition. ACS Nano, 2012, 6(4): 3224–3229

    [114] Lin Y C, Lu C C, Yeh C H, Jin C, Suenaga K, Chiu PW. Graphene annealing: how clean can it be? Nano Letters, 2012, 12(1): 414– 419

    [115] Zhang Z, Du J, Zhang D, Sun H, Yin L, Ma L, Chen J, Ma D, Cheng H M, Ren W. Rosin-enabled ultraclean and damage-free transfer of graphene for large-area flexible organic light-emitting diodes. Nature Communications, 2017, 8(1): 14560

    [116] Lin Y C, Jin C, Lee J C, Jen S F, Suenaga K, Chiu P W. Clean transfer of graphene for isolation and suspension. ACS Nano, 2011, 5(3): 2362–2368

    [117] Kang M H, Prieto López L O, Chen B, Teo K,Williams J A, Milne W I, Cole M T. Mechanical robustness of graphene on flexible transparent substrates. ACS Applied Materials & Interfaces, 2016, 8(34): 22506–22515

    [118] Song J, Kam F Y, Png R Q, SeahWL, Zhuo JM, Lim G K, Ho P K H, Chua L L. A general method for transferring graphene onto soft surfaces. Nature Nanotechnology, 2013, 8(5): 356–362

    [119] Yoon J C, Thiyagarajan P, Ahn H J, Jang J H. A case study: effect of defects in CVD-grown graphene on graphene enhanced Raman spectroscopy. RSC Advances, 2015, 5(77): 62772–62777

    [120] Qin L, Kattel B, Kafle T R, Alamri M, Gong M, Panth M, Hou Y, Wu J, Chan W. Scalable graphene-on-organometal halide perovskite heterostructure fabricated by dry transfer. Advanced Materials Interfaces, 2019, 6(1): 1801419

    [121] Chandrashekar B N, Deng B, Smitha A S, Chen Y, Tan C, Zhang H, Peng H, Liu Z. Roll-to-roll green transfer of CVD graphene onto plastic for a transparent and flexible triboelectric nanogenerator. Advanced Materials, 2015, 27(35): 5210–5216

    [122] Marchena M, Wagner F, Arliguie T, Zhu B, Johnson B, Fernández M, Chen T L, Chang T, Lee R, Pruneri V, Mazumder P. Dry transfer of graphene to dielectrics and flexible substrates using polyimide as a transparent and stable intermediate layer. 2D Materials, 2018, 5(3): 035022

    [123] Shivayogimath A, Whelan P R, Mackenzie D M A, Luo B, Huang D, Luo D,Wang M, Gammelgaard L, Shi H, Ruoff R S, B?ggild P, Booth T J. Do-it-yourself transfer of large-area graphene using an office laminator and water. Chemistry of Materials, 2019, 31(7): 2328–2336

    [124] Kang J, Hwang S, Kim J H, Kim M H, Ryu J, Seo S J, Hong B H, Kim M K, Choi J B. Efficient transfer of large-area graphene films onto rigid substrates by hot pressing. ACS Nano, 2012, 6(6): 5360– 5365

    [125] Fechine G J M, Martin-Fernandez I, Yiapanis G, Bentini R, Kulkarni E S, Bof de Oliveira RV, Hu X, Yarovsky I, Castro Neto A H, ?zyilmaz B. Direct dry transfer of chemical vapor deposition graphene to polymeric substrates. Carbon, 2015, 83: 224–231

    [126] Cherian C T, Giustiniano F, Martin-Fernandez I, Andersen H, Balakrishnan J, ?zyilmaz B. ‘Bubble-free’ electrochemical delamination of CVD graphene films. Small, 2015, 11(2): 189–194

    [127] Wang Y, Zheng Y, Xu X, Dubuisson E, Bao Q, Lu J, Loh K P. Electrochemical delamination of CVD-grown graphene film: toward the recyclable use of copper catalyst. ACS Nano, 2011, 5 (12): 9927–9933

    [128] Pizzocchero F, Jessen B S, Whelan P R, Kostesha N, Lee S, Buron J D, Petrushina I, Larsen M B, Greenwood P, Cha W J, Teo K, Jepsen P U, Hone J, B?ggild P, Booth T J. Non-destructive electrochemical graphene transfer from reusable thin-film catalysts. Carbon, 2015, 85: 397–405

    [129] Zhan Z, Sun J, Liu L, Wang E, Cao Y, Lindvall N, Skoblin G, Yurgens A. Pore-free bubbling delamination of chemical vapor deposited graphene from copper foils. Journal of Materials Chemistry C, Materials for Optical and Electronic Devices, 2015, 3(33): 8634

    [130] Sun J, Chen Y, Cai X, Ma B, Chen Z, Priydarshi M K, Chen K, Gao T, Song X, Ji Q, Guo X, Zou D, Zhang Y, Liu Z. Direct lowtemperature synthesis of graphene on various glasses by plasmaenhanced chemical vapor deposition for versatile, cost-effective electrodes. Nano Research, 2015, 8(11): 3496–3504

    [131] Wei D, Peng L, Li M, Mao H, Niu T, Han C, Chen W, Wee A T S. Low temperature critical growth of high quality nitrogen doped graphene on dielectrics by plasma-enhanced chemical vapor deposition. ACS Nano, 2015, 9(1): 164–171

    [132] Zheng S, Zhong G, Wu X, D’Arsiè L, Robertson J. Metal-catalystfree growth of graphene on insulating substrates by ammoniaassisted microwave plasma-enhanced chemical vapor deposition. RSC Advances, 2017, 7: 33185–33193

    [133] Schmidt M E, Xu C, Cooke M, Mizuta H, Chong H M H. Metalfree plasma-enhanced chemical vapor deposition of large area nanocrystalline grapheme. Materials Research Express, 2014, 1(2): 025031

    [134] Wei N, Li Q, Cong S, Ci H, Song Y, Yang Q, Lu C, Li C, Zou G, Sun J, Zhang Y, Liu Z. Direct synthesis of flexible graphene glass with macroscopic uniformity enabled by copper-foam-assisted PECVD. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2019, 7(9): 4813–4822

    [135] Chen Z, Liu Y, Zhang W, Guo X, Yin L, Wang Y, Li L, Zhang Y, Wang Z, Zhang T. Growth of graphene/Ag nanowire/graphene sandwich films for transparent touch-sensitive electrodes. Materials Chemistry and Physics, 2019, 221: 78–88

    [136] Vishwakarma R, Zhu R, Abuelwafa A A, Mabuchi Y, Adhikari S, Ichimura S, Soga T, Umeno M. Direct synthesis of large-area graphene on insulating substrates at low temperature using microwave plasma CVD. ACS Omega, 2019, 4(6): 11263–11270

    [137] Park B J, Choi J S, Eom J H, Ha H, Kim H Y, Lee S, Shin H, Yoon S G. Defect-free graphene synthesized directly at 150°C via chemical vapor deposition with no transfer. ACS Nano, 2018, 12 (2): 2008–2016

    [138] Tran V D, Pammi S V N, Park B J, Han Y, Jeon C, Yoon S G. Transfer-free graphene electrodes for super-flexible and semitransparent perovskite solar cells fabricated under ambient air. Nano Energy, 2019, 65: 104018

    [139] Kwon K C, Kim B J, Lee J L, Kim S Y. Effect of anions in Au complexes on doping and degradation of graphene. Journal of Materials Chemistry C, Materials for Optical and Electronic Devices, 2013, 1(13): 2463–2469

    [140] Jang C W, Kim J M, Kim J H, Shin D H, Kim S, Choi S H. Degradation reduction and stability enhancement of p-type graphene by RhCl3 doping. Journal of Alloys and Compounds, 2015, 621: 1–6

    [141] Bult J B, Crisp R, Perkins C L, Blackburn J L. Role of dopants in long-range charge carrier transport for p-type and n-type graphene transparent conducting thin films. ACS Nano, 2013, 7(8): 7251– 7261

    [142] Liu H, Liu Y, Zhu D. Chemical doping of graphene. Journal of Materials Chemistry, 2011, 21(10): 3335–3345

    [143] Chae M S, Lee T H, Son K R, Kim Y W, Hwang K S, Kim T G. Electrically-doped CVD-graphene transparent electrodes: application in 365 nm light-emitting diodes. Nanoscale Horizons, 2019, 4 (3): 610–618

    [144] Zhang X, Hsu A, Wang H, Song Y, Kong J, Dresselhaus M S, Palacios T. Impact of chlorine functionalization on high-mobility chemical vapor deposition grown graphene. ACS Nano, 2013, 7 (8): 7262–7270

    [145] Gomez De Arco L, Zhang Y, Schlenker CW, Ryu K, ThompsonM E, Zhou C. Continuous, highly flexible, and transparent graphene films by chemical vapor deposition for organic photovoltaics. ACS Nano, 2010, 4(5): 2865–2873

    [146] Reina A, Jia X, Ho J, Nezich D, Son H, Bulovic V, Dresselhaus M S, Kong J. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Letters, 2009, 9(1): 30–35

    [147] Zan R, Altuntepe A. Nitrogen doping of graphene by CVD. Journal of Molecular Structure, 2020, 1199: 127026

    [148] Kim K K, Reina A, Shi Y, Park H, Li L J, Lee Y H, Kong J. Enhancing the conductivity of transparent graphene films via doping. Nanotechnology, 2010, 21(28): 285205

    [149] Bi H, Huang F, Liang J, Xie X, Jiang M. Transparent conductive graphene films synthesized by ambient pressure chemical vapor deposition used as the front electrode of CdTe solar cells. Advanced Materials, 2011, 23(28): 3202–3206

    [150] Guo C, Kong X, Ji H. Hot-roll-pressing mediated transfer of chemical vapor deposition graphene for transparent and flexible touch screen with low sheet-resistance. Journal of Nanoscience and Nanotechnology, 2018, 18(6): 4337–4342

    [151] Chang J H, Lin W H, Wang P C, Taur J I, Ku T A, Chen W T, Yan S J, Wu C I. Solution-processed transparent blue organic lightemitting diodes with graphene as the top cathode. Scientific Reports, 2015, 5(1): 9693

    [152] Tongay S, Berke K, Lemaitre M, Nasrollahi Z, Tanner D B, Hebard A F, Appleton B R. Stable hole doping of graphene for low electrical resistance and high optical transparency. Nanotechnology, 2011, 22(42): 425701

    [153] Xu S C, Man B Y, Jiang S Z, Chen C S, Yang C, Liu M, Gao X G, Sun Z C, Zhang C. Flexible and transparent graphene-based loudspeakers. Applied Physics Letters, 2013, 102(15): 151902

    [154] Park H, Rowehl J A, Kim K K, Bulovic V, Kong J. Doped graphene electrodes for organic solar cells. Nanotechnology, 2010, 21(50): 505204

    [155] Galagan Y, Mescheloff A, Veenstra S C, Andriessen R, Katz E A. Reversible degradation in ITO-containing organic photovoltaics under concentrated sunlight. Physical Chemistry Chemical Physics, 2015, 17(5): 3891–3897

    [156] Chochos C L, Spanos M, Katsouras A, Tatsi E, Drakopoulou S, Gregoriou V G, Avgeropoulos A. Current status, challenges and future outlook of high performance polymer semiconductors for organic photovoltaics modules. Progress in Polymer Science, 2019, 91: 51–79

    [157] Zhao J, Li Y, Yang G, Jiang K, Lin H, Ade H, Ma W, Yan H. Efficient organic solar cells processed from hydrocarbon solvents. Nature Energy, 2016, 1(2): 15027

    [158] Zhao W, Li S, Zhang S, Liu X, Hou J. Ternary polymer solar cells based on two acceptors and one donor for achieving 12.2% efficiency. Advanced Materials, 2017, 29(2): 1604059

    [159] Sun C, Pan F, Bin H, Zhang J, Xue L, Qiu B,Wei Z, Zhang Z G, Li Y. A low cost and high performance polymer donor material for polymer solar cells. Nature Communications, 2018, 9(1): 743

    [160] Nogay G, Sahli F,Werner J, Monnard R, Boccard M, Despeisse M, Haug F J, Jeangros Q, Ingenito A, Ballif C. 25.1%-efficient monolithic perovskite/silicon tandem solar cell based on a p-type monocrystalline textured silicon wafer and high-temperature passivating contacts. ACS Energy Letters, 2019, 4(4): 844–845

    [161] La Notte L, Bianco G V, Palma A L, Di Carlo A, Bruno G, Reale A. Sprayed organic photovoltaic cells and mini-modules based on chemical vapor deposited graphene as transparent conductive electrode. Carbon, 2018, 129: 878–883

    [162] Park H, Chang S, Zhou X, Kong J, Palacios T, Grade?ak S. Flexible graphene electrode-based organic photovoltaics with record-high efficiency. Nano Letters, 2014, 14(9): 5148–5154

    [163] Liu J, Durstock M, Dai L. Graphene oxide derivatives as hole- and electron-extraction layers for high-performance polymer solar cells. Energy & Environmental Science, 2014, 7(4): 1297–1306

    [164] Capasso A, Salamandra L, Faggio G, Dikonimos T, Buonocore F, Morandi V, Ortolani L, Lisi N. Chemical vapor deposited graphene-based derivative as high-performance hole transport material for organic photovoltaics. ACS Applied Materials & Interfaces, 2016, 8(36): 23844–23853

    [165] Mackenzie D M A, Buron J D, Whelan P R, Jessen B S, Silajd?i? A, Pesquera A, Centeno A, Zurutuza A, B?ggild P, Petersen D H. Fabrication of CVD graphene-based devices via laser ablation for wafer-scale characterization. 2D Materials, 2015, 2(4): 045003

    [166] La Notte L, Villari E, Palma A L, Sacchetti A, Michela Giangregorio M, Bruno G, Di Carlo A, Bianco G V, Reale A. Laser-patterned functionalized CVD-graphene as highly transparent conductive electrodes for polymer solar cells. Nanoscale, 2017, 9(1): 62–69

    [167] Gomez De Arco L, Zhang Y, Schlenker CW, Ryu K, ThompsonM E, Zhou C. Continuous, highly flexible, and transparent graphene films by chemical vapor deposition for organic photovoltaics. ACS Nano, 2010, 4(5): 2865–2873

    [168] Park H, Howden R M, Barr M C, Bulovi? V, Gleason K, Kong J. Organic solar cells with graphene electrodes and vapor printed poly (3,4-ethylenedioxythiophene) as the hole transporting layers. ACS Nano, 2012, 6(7): 6370–6377

    [169] Lee B H, Lee J H, Kahng Y H, Kim N, Kim Y J, Lee J, Lee T, Lee K. Graphene-conducting polymer hybrid transparent electrodes for efficient organic optoelectronic devices. Advanced Functional Materials, 2014, 24(13): 1847–1856

    [170] La Notte L, Cataldi P, Ceseracciu L, Bayer I S, Athanassiou A, Marras S, Villari E, Brunetti F, Reale A. Fully-sprayed flexible polymer solar cells with a cellulose-graphene electrode. Materials Today Energy, 2018, 7: 105–112

    [171] Rezaei B, Afshar-Taromi F, Ahmadi Z, Amiri Rigi S, Yousefi N. Enhancement of power conversion efficiency of bulk heterojunction polymer solar cells using core/shell, Au/graphene plasmonic nanostructure. Materials Chemistry and Physics, 2019, 228: 325– 335

    [172] Mahakul P C, Sa K, Das B, Subramaniam B V R S, Saha S, Moharana B, Raiguru J, Dash S, Mukherjee J, Mahanandia P. Preparation and characterization of PEDOT:PSS/reduced graphene oxide–carbon nanotubes hybrid composites for transparent electrode applications. Journal of Materials Science, 2017, 52(10): 5696–5707

    [173] Ricciardulli A G, Yang S, Wetzelaer G J A H, Feng X, Blom P W M. Hybrid silver nanowire and graphene-based solution-processed transparent electrode for organic optoelectronics. Advanced Functional Materials, 2018, 28(14): 1706010

    [174] Wang M, Yu H, Ma X, Yao Y,Wang L, Liu L, Cao K, Liu S, Dong C, Zhao B, Song C, Chen S, Huang W. Copper oxide-modified graphene anode and its application in organic photovoltaic cells. Optics Express, 2018, 26(18): A769–A776

    [175] Nan H, Han J, Luo Q, Yin X, Zhou Y, Yao Z, Zhao X, Li X, Lin H. Economically synthesized NiCo2S4/reduced graphene oxide composite as efficient counter electrode in dye-sensitized solar cell. Applied Surface Science, 2018, 437: 227–232

    [176] Sankar Ganesh R, Silambarasan K, Durgadevi E, Navaneethan M, Ponnusamy S, Kong C Y, Muthamizhchelvan C, Shimura Y, Hayakawa Y. Metal sulfide nanosheet–nitrogen-doped graphene hybrids as low-cost counter electrodes for dye-sensitized solar cells. Applied Surface Science, 2019, 480: 177–185

    [177] Silambarasan K, Archana J, Athithya S, Harish S, Sankar Ganesh R, Navaneethan M, Ponnusamy S, Muthamizhchelvan C, Hara K, Hayakawa Y. Hierarchical NiO@NiS@graphene nanocomposite as a sustainable counter electrode for Pt free dye-sensitized solar cell. Applied Surface Science, 2020, 501: 144010

    [178] Murugadoss V, Panneerselvam P, Yan C, Guo Z, Angaiah S. A simple one-step hydrothermal synthesis of cobalt nickel selenide/ graphene nanohybrid as an advanced platinum free counter electrode for dye sensitized solar cell. Electrochimica Acta, 2019, 312: 157–167

    [179] Rehman S, Noman M, Khan A D, Saboor A, Ahmad M S, Khan H U. Synthesis of polyvinyl acetate /graphene nanocomposite and its application as an electrolyte in dye sensitized solar cells. Optik (Stuttgart), 2020, 202: 163591

    [180] Chong S W, Lai C W, Juan J C, Leo B F. An investigation on surface modified TiO2 incorporated with graphene oxide for dyesensitized solar cell. Solar Energy, 2019, 191: 663–671

    [181] Wei L, Wang P, Yang Y, Zhan Z, Dong Y, Song W, Fan R. Enhanced performance of the dye-sensitized solar cells by the introduction of graphene oxide into the TiO2 photoanode. Inorganic Chemistry Frontiers, 2018, 5(1): 54–62

    [182] Sasikumar R, Chen T W, Chen S M, Rwei S P, Ramaraj S K. Developing the photovoltaic performance of dye-sensitized solar cells (DSSCs) using a SnO2-doped graphene oxide hybrid nanocomposite as a photo-anode. Optical Materials, 2018, 79: 345–352

    [183] Sadikin S N, Rahman M Y A, Umar A A, Aziz T H T. Improvement of dye-sensitized solar cell performance by utilizing graphene-coated TiO2 films photoanode. Superlattices and Microstructures, 2019, 128: 92–98

    [184] NREL. Best research-cell efficiencies (National Renewable Energy Laboratory: Golden, Colorado), 2019

    [185] Bag M, Renna L A, Adhikari R Y, Karak S, Liu F, Lahti P M, Russell T P, Tuominen M T, Venkataraman D. Kinetics of ion transport in perovskite active layers and its implications for active layer stability. Journal of the American Chemical Society, 2015, 137(40): 13130–13137

    [186] Bastos J P, Paetzold U W, Gehlhaar R, Qiu W, Cheyns D, Surana S, Spampinato V, Aernouts T, Poortmans J. Light-induced degradation of perovskite solar cells: the influence of 4-tert-butyl pyridine and gold. Advanced Energy Materials, 2018, 8(23): 1800554

    [187] Raga S R, Jung M C, Lee M V, Leyden M R, Kato Y, Qi Y. Influence of air annealing on high efficiency planar structure perovskite solar cells. Chemistry of Materials, 2015, 27(5): 1597– 1603

    [188] Christians J A, Miranda Herrera P A, Kamat P V. Transformation of the excited state and photovoltaic efficiency of CH3NH3PbI3 perovskite upon controlled exposure to humidified air. Journal of the American Chemical Society, 2015, 137(4): 1530–1538

    [189] Domanski K, Correa-Baena J P, Mine N, Nazeeruddin M K, Abate A, Saliba M, Tress W, Hagfeldt A, Gr?tzel M. Not all that glitters is gold: metal-migration-induced degradation in perovskite solar cells. ACS Nano, 2016, 10(6): 6306–6314

    [190] Guerrero A, You J, Aranda C, Kang Y S, Garcia-Belmonte G, Zhou H, Bisquert J, Yang Y. Interfacial degradation of planar lead halide perovskite solar cells. ACS Nano, 2016, 10(1): 218–224

    [191] Wang R, Mujahid M, Duan Y,Wang Z, Xue J, Yang Y. A review of perovskites solar cell stability. Advanced Functional Materials, 2019, 29(47): 1808843

    [192] Jeong G, Koo D, Seo J, Jung S, Choi Y, Lee J, Park H. Suppressed interdiffusion and degradation in flexible and transparent metal electrode-based perovskite solar cells with a graphene interlayer. Nano Letters, 2020, 20(5): 3718–3727

    [193] Tavakoli M M, Tavakoli R, Yadav P, Kong J. A graphene/ZnO electron transfer layer together with perovskite passivation enables highly efficient and stable perovskite solar cells. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2019, 7(2): 679–686

    [194] Kim J M, Jang C W, Kim J H, Kim S, Choi S H. Use of AuCl3- doped graphene as a protecting layer for enhancing the stabilities of inverted perovskite solar cells. Applied Surface Science, 2018, 455: 1131–1136

    [195] Jokar E, Huang Z Y, Narra S, Wang C Y, Kattoor V, Chung C C, Diau EW G. Anomalous charge-extraction behavior for grapheneoxide (GO) and reduced graphene-oxide (rGO) films as efficient pcontact layers for high-performance perovskite solar cells. Advanced Energy Materials, 2018, 8(3): 1701640

    [196] Cogal S, Calio L, Celik Cogal G, Salado M, Kazim S, Oksuz L, Ahmad S, Uygun Oksuz A. RF plasma-enhanced graphene– polymer composites as hole transport materials for perovskite solar cells. Polymer Bulletin, 2018, 75(10): 4531–4545

    [197] Nouri E, Mohammadi M R, Lianos P. Improving the stability of inverted perovskite solar cells under ambient conditions with graphene-based inorganic charge transporting layers. Carbon, 2018, 126: 208–214

    [198] Zhao X, Tao L, Li H, Huang W, Sun P, Liu J, Liu S, Sun Q, Cui Z, Sun L, Shen Y, Yang Y, Wang M. Efficient planar perovskite solar cells with improved fill factor via interface engineering with graphene. Nano Letters, 2018, 18(4): 2442–2449

    [199] O’Keeffe P, Catone D, Paladini A, Toschi F, Turchini S, Avaldi L, Martelli F, Agresti A, Pescetelli S, Del Rio Castillo A E, Bonaccorso F, Di Carlo A. Graphene-induced improvements of perovskite solar cell stability: effects on hot-carriers. Nano Letters, 2019, 19(2): 684–691

    [200] Yoon J, Sung H, Lee G, Cho W, Ahn N, Jung H S, Choi M. Superflexible, high-efficiency perovskite solar cells utilizing graphene electrodes: towards future foldable power sources. Energy & Environmental Science, 2017, 10(1): 337–345

    [201] Heo J H, Shin D H, Song D H, Kim D H, Lee S J, Im S H. Superflexible bis(trifluoromethanesulfonyl)-amide doped graphene transparent conductive electrodes for photo-stable perovskite solar cells. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2018, 6(18): 8251–8258

    [202] Zhang C,Wang S, Zhang H, Feng Y, Tian W, Yan Y, Bian J,Wang Y, Jin S, Zakeeruddin S M, Gr?tzel M, Shi Y. Efficient stable graphene-based perovskite solar cells with high flexibility in device assembling via modular architecture design. Energy & Environmental Science, 2019, 12(12): 3585–3594

    [203] Sung H, Ahn N, Jang M S, Lee J K, Yoon H, Park N G, Choi M. Transparent conductive oxide-free graphene-based perovskite solar cells with over 17% efficiency. Advanced Energy Materials, 2016, 6(3): 1501873

    [204] Fu W, Jiang L, van Geest E P, Lima L M C, Schneider G F. Sensing at the surface of graphene field-effect transistors. Advanced Materials, 2017, 29(6): 1603610

    [205] Afsahi S, Lerner M B, Goldstein J M, Lee J, Tang X, Bagarozzi D A Jr, Pan D, Locascio L, Walker A, Barron F, Goldsmith B R. Novel graphene-based biosensor for early detection of Zika virus infection. Biosensors & Bioelectronics, 2018, 100: 85–88

    [206] Chen S, Sun Y, Xia Y, Lv K, Man B, Yang C. Donor effect dominated molybdenum disulfide/graphene nanostructure-based field-effect transistor for ultrasensitive DNA detection. Biosensors & Bioelectronics, 2020, 156: 112128

    [207] Hwang M T, Heiranian M, Kim Y, You S, Leem J, Taqieddin A, Faramarzi V, Jing Y, Park I, van der Zande A M, Nam S, Aluru N R, Bashir R. Ultrasensitive detection of nucleic acids using deformed graphene channel field effect biosensors. Nature Communications, 2020, 11(1): 1543

    [208] Kim S, Xing L, Islam A E, Hsiao M S, Ngo Y, Pavlyuk O M, Martineau R L, Hampton C M, Crasto C, Slocik J, Kadakia M P, Hagen J A, Kelley-Loughnane N, Naik R R, Drummy L F. In operando observation of neuropeptide capture and release on graphene field-effect transistor biosensors with picomolar sensitivity. ACS Applied Materials & Interfaces, 2019, 11(15): 13927– 13934

    [209] Seo G, Lee G, Kim M J, Baek S H, Choi M, Ku K B, Lee C S, Jun S, Park D, Kim H G, Kim S J, Lee J O, Kim B T, Park E C, Kim S I. Rapid detection of COVID-19 causative virus (SARS-CoV-2) in human nasopharyngeal swab specimens using field-effect transistor- based biosensor. ACS Nano, 2020, 14(4): 5135–5142

    [210] Loan P T K,Wu D, Ye C, Li X, Tra V T,Wei Q, Fu L, Yu A, Li L J, Lin C T. Hall effect biosensors with ultraclean graphene film for improved sensitivity of label-free DNA detection. Biosensors & Bioelectronics, 2018, 99: 85–91

    [211] Zhan H, Cervenka J, Prawer S, Garrett D J. Molecular detection by liquid gated Hall effect measurements of graphene. Nanoscale, 2018, 10(3): 930–935

    [212] Li N, Tang T, Li J, Luo L, Li C, Shen J, Yao J. Highly sensitive biosensor with graphene-MoS2 heterostructure based on photonic spin Hall effect. Journal of Magnetism and Magnetic Materials, 2019, 484: 445–450

    [213] Zhou X, Sheng L, Ling X. Photonic spin Hall effect enabled refractive index sensor using weak measurements. Scientific Reports, 2018, 8(1): 1221

    [214] Zhao Z, Yang H, Zhao W, Deng S, Zhang K, Deng R, He Q, Gao H, Li J. Graphene-nucleic acid biointerface-engineered biosensors with tunable dynamic range. Journal of Materials Chemistry B, Materials for Biology and Medicine, 2020, 8(16): 3623–3630

    [215] Xie K X, Cao S H, Wang Z C, Weng Y H, Huo S X, Zhai Y Y, Chen M, Pan X H, Li Y Q. Graphene oxide-assisted surface plasmon coupled emission for amplified fluorescence immunoassay. Sensors and Actuators B, Chemical, 2017, 253: 804–808

    [216] Sun L, Zhang Y,Wang Y, Yang Y, Zhang C,Weng X, Zhu S, Yuan X. Real-time subcellular imaging based on graphene biosensors. Nanoscale, 2018, 10(4): 1759–1765

    [217] Xu Y, Zhuang R, Zhang Z, Yi R, Guo X, Qi Z. Single-layer graphene-based surface plasmon resonance biosensors for immunization study. In: Proceedings of the 8th Applied Optics and Photonics China (AOPC 2019), Optical Spectroscopy Imaging, 2019, 11337

    [218] Rahman MS, Anower M S, Hasan M R, Hossain M B, Haque MI. Design and numerical analysis of highly sensitive Au-MoS2- graphene based hybrid surface plasmon resonance biosensor. Optics Communications, 2017, 396: 36–43

    [219] Gopalan K K, Paulillo B, Mackenzie DMA, Rodrigo D, Bareza N, Whelan P R, Shivayogimath A, Pruneri V. Scalable and tunable periodic graphene nanohole arrays for mid-infrared plasmonics. Nano Letters, 2018, 18(9): 5913–5918

    [220] Siegel P H. Terahertz technology in biology and medicine. IEEE Transactions on Microwave Theory and Techniques, 2004, 52(10): 2438–2447

    [221] Jepsen P U, Cooke D G, Koch M. Terahertz spectroscopy and imaging–modern techniques and applications. Laser & Photonics Reviews, 2011, 5(1): 124–166

    [222] Sengupta K. Integrated circuits for terahertz communication beyond 100 GHz: are we there yet? In: Proceedings of IEEE International Conference on Communications, Workshop ICC Workshop, 2019

    [223] Ajito K, Ueno Y. THz chemical imaging for biological applications. IEEE Transactions on Terahertz Science and Technology, 2011, 1(1): 293–300

    [224] Auton G, But D B, Zhang J, Hill E, Coquillat D, Consejo C, Nouvel P, Knap W, Varani L, Teppe F, Torres J, Song A. Terahertz detection and imaging using graphene ballistic rectifiers. Nano Letters, 2017, 17(11): 7015–7020

    [225] Yang X, Vorobiev A, Generalov A, Andersson M A, Stake J. A flexible graphene terahertz detector. Applied Physics Letters, 2017, 111(2): 021102

    [226] Yang X X, Sun J D, Qin H, Lv L, Su L N, Yan B, Li X X, Zhang Z P, Fang J Y. Room-temperature terahertz detection based on CVD graphene transistor. Chinese Physics B, 2015, 24(4): 047206

    [227] Valmorra F, Scalari G, Maissen C, Fu W, Sch?nenberger C, Choi J W, Park H G, Beck M, Faist J. Low-bias active control of terahertz waves by coupling large-area CVD graphene to a terahertz metamaterial. Nano Letters, 2013, 13(7): 3193–3198

    [228] Generalov A A, Andersson M A, Yang X, Vorobiev A, Stake J A. 400-GHz graphene FET detector. IEEE Transactions on Terahertz Science and Technology, 2017, 7(5): 614–616

    [229] Kakenov N, Ergoktas M S, Balci O, Kocabas C. Graphene based terahertz phase modulators. 2D Materials, 2018, 5(3): 035018

    [230] Shin J W, Cho H, Lee J, Moon J, Han J H, Kim K, Cho S, Lee J I, Kwon B H, Cho D H, Lee K M, Suemitsu M, Cho N S. Overcoming the efficiency limit of organic light-emitting diodes using ultra-thin and transparent graphene electrodes. Optics Express, 2018, 26(2): 617–626

    [231] Shin J W, Han J H, Cho H, Moon J, Kwon B H, Cho S, Yoon T, Kim T S, Suemitsu M, Lee J I, Cho N S. Display process compatible accurate graphene patterning for OLED applications. 2D Materials, 2017, 5(1): 014003

    [232] Lee J, Han T H, Park M H, Jung D Y, Seo J, Seo H K, Cho H, Kim E, Chung J, Choi S Y, Kim T S, Lee T W, Yoo S. Synergetic electrode architecture for efficient graphene-based flexible organic light-emitting diodes. Nature Communications, 2016, 7(1): 11791

    [233] Kwon O E, Shin J W, Oh H, Kang C, Cho H, Kwon B H, Byun C W, Yang J H, Lee K M, Han J H, Sung Cho N, Hyuk Yoon J, Jin Chae S, Sung Park J, Lee H, Hwang C S, Moon J, Lee J I. A prototype active-matrix OLED using graphene anode for flexible display application. Journal of Information Display, 2020, 21(1): 49–56

    [234] Zhang Z, Du J, Zhang D, Sun H, Yin L, Ma L, Chen J, Ma D, Cheng H M, Ren W. Rosin-enabled ultraclean and damage-free transfer of graphene for large-area flexible organic light-emitting diodes. Nature Communications, 2017, 8(1): 14560

    [235] Torres Alonso E, Karkera G, Jones G F, Craciun M F, Russo S. Homogeneously bright, flexible, and foldable lighting devices with functionalized graphene electrodes. ACS Applied Materials & Interfaces, 2016, 8(26): 16541–16545

    [236] Wang Z G, Chen Y F, Li P J, Hao X, Liu J B, Huang R, Li Y R. Flexible graphene-based electroluminescent devices. ACS Nano, 2011, 5(9): 7149–7154

    [237] Shin H, Sharma B K, Lee S W, Lee J B, Choi M, Hu L, Park C, Choi J H, Kim T W, Ahn J H. Stretchable electroluminescent display enabled by graphene-based hybrid electrode. ACS Applied Materials & Interfaces, 2019, 11(15): 14222–14228

    [238] Chandran A, Joshi T, Sharma I, Subhedar KM, Mehta D S, Biradar A M. Monolayer graphene electrodes as alignment layer for ferroelectric liquid crystal devices. Journal of Molecular Liquids, 2019, 279: 294–298

    [239] Hu T,Wang H, Shao Y, Zhang X, Liu G, Li M, Chen H, Lee Y. 66- 3: a high reliability PEDOT:PSS/graphene transparent electrode for liquid crystal displays. SID Symposium Digest of Technical Papers, 2017, 48(1): 972–975

    [240] Petrov S, Marinova V, Lin S H, Chang C M, Lin Y H, Hsu K Y. Large scale liquid crystal device with graphene-based electrodes. Optical Data Processing and Storage, 2017, 3(1): 114–118

    [241] Mustapha N, Fekkai Z, Ibnaouf K H. Improved performance of organic light-emitting diodes based on oligomer thin films with graphene. Journal of Electronic Materials, 2020, 49(3): 2203–2210

    [242] Fu Y, Sun J, Du Z, Guo W, Yan C, Xiong F, Wang L, Dong Y, Xu C, Deng J, Guo T, Yan Q F. Monolithic integrated device of GaN micro-LED with graphene transparent electrode and graphene active-matrix driving transistor. Materials (Basel), 2019, 12(3): 428

    Petri MUSTONEN, David M. A. MACKENZIE, Harri LIPSANEN. Review of fabrication methods of large-area transparent graphene electrodes for industry[J]. Frontiers of Optoelectronics, 2020, 13(2): 91
    Download Citation