• Chinese Journal of Lasers
  • Vol. 46, Issue 3, 0302012 (2019)
Wei Zhang1、*, Qinghua Lu1、2、*, Xinhuai Ren1, Yongzhen Bai1, Jiewen Jin1, and Yangling Ou1
Author Affiliations
  • 1 College of Materials Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
  • 2 Shanghai Research and Development Center for Key Technologies of Ultra-Intense Laser Processing,Shanghai University of Engineering Science, Shanghai 201620, China
  • show less
    DOI: 10.3788/CJL201946.0302012 Cite this Article Set citation alerts
    Wei Zhang, Qinghua Lu, Xinhuai Ren, Yongzhen Bai, Jiewen Jin, Yangling Ou. Fatigue Properties and Fracture Behavior of 5052 Aluminum Alloys Welded by High Frequency Micro-Vibration Laser[J]. Chinese Journal of Lasers, 2019, 46(3): 0302012 Copy Citation Text show less
    Schematic of experimental platform for high frequency micro-vibration laser welding
    Fig. 1. Schematic of experimental platform for high frequency micro-vibration laser welding
    Schematic of residual stress test point and fatigue sample
    Fig. 2. Schematic of residual stress test point and fatigue sample
    Microstructures at fusion lines. (a) Weld fusion line 1; (b) weld fusion line 5
    Fig. 3. Microstructures at fusion lines. (a) Weld fusion line 1; (b) weld fusion line 5
    Residual stress of double-line welded sheet
    Fig. 4. Residual stress of double-line welded sheet
    S-N curves of base metal and double-line sample
    Fig. 5. S-N curves of base metal and double-line sample
    BM fatigue fracture morphology of 5052 aluminum alloy. (a) Fracture morphology and position diagram; (b) fatigue step; (c) secondary crack; (d) dimple
    Fig. 6. BM fatigue fracture morphology of 5052 aluminum alloy. (a) Fracture morphology and position diagram; (b) fatigue step; (c) secondary crack; (d) dimple
    Fatigue fracture morphologies of welded joints. (a) Fracture of multiple fatigue sources; (b) fracture of single fatigue source; (c) hole; (d) fatigue striations; (e) crack tip junctions
    Fig. 7. Fatigue fracture morphologies of welded joints. (a) Fracture of multiple fatigue sources; (b) fracture of single fatigue source; (c) hole; (d) fatigue striations; (e) crack tip junctions
    ElementSiFeMnMgTiotherAl
    Mass fraction /%0.40.20.152.00.150.15Bal.
    Table 1. Chemical compositions of 5052 aluminum alloy
    No. of plate(weld number/weld number)Weld line 1Weld line 2
    Frequency /HzAcceleration /(m·s-2)Frequency /HzAcceleration /(m·s-2)
    A(1/2)0054566.5
    B(3/4)0096733.4
    C(5/6)55092.297034.3
    D(7/8)0000
    E(9/10)5497754552.5
    F(11/12)97754.197694
    Table 2. Parameters for test (P=5 kW; v=0.03 m/s; DDA=-15 mm)
    SampleABCEF
    Fatigue strength coefficient b0.1070.1140.0720.0960.069
    Residual stress of fracture weld /MPa297.5321196.5238.5240.5
    Table 3. Residual stress and fatigue strength coefficient
    Wei Zhang, Qinghua Lu, Xinhuai Ren, Yongzhen Bai, Jiewen Jin, Yangling Ou. Fatigue Properties and Fracture Behavior of 5052 Aluminum Alloys Welded by High Frequency Micro-Vibration Laser[J]. Chinese Journal of Lasers, 2019, 46(3): 0302012
    Download Citation