[1] H ZHU, H GUO, J SUN et al. Research progress on active secondary jet technology in supersonic flow field of aerospace propulsion systems. Fluids, 8, 313(2023).
[2] SINGH H, SHEKHAR H. Solid Rocket Propellants: Science Technology Challenges[M]. London: Royal Society of Chemistry, 2016.
[3] A PÉQUIN, M J EVANS, A CHINNICI et al. The reactor-based perspective on finite-rate chemistry in turbulent reacting flows: a review from traditional to low-emission combustion. Applications in Energy and Combustion Science, 16, 100201(2023).
[4] VU B, OLIVEIRA J, PATEL D. Combustion model of supersonic rocket exhausts in an entrained flow enclosure[C] Proceedings of The 20th AIAA Computational Fluid Dynamics Conference, 2011: 3210.
[5] TROYES J, DUBOIS I, BIE V, et al. Multiphase reactive numerical simulations of a model solid rocket exhaust jet[C] Proceedings of The 42nd AiaaAsmeSaeAsee Joint Propulsion Conference, 2006: 4414.
[6] D BAULCH, C COBOS, R COX et al. Evaluated kinetic data for combustion modelling. Journal of Physical Chemical Reference Data, 21, 411-734(1992).
[7] M A MUELLER, T J KIM, R A YETTER et al. Flow reactor studies and kinetic modeling of the H2/O2 reaction. International Journal of Chemical Kinetics, 31, 113-125(1999).
[8] KEE R J, RUPLEY F M, MILLER J A. ChemkinII: A ftran chemical kiics package f the analysis of gasphase chemical kiics[R]. US: Sia National Lab, 1989.
[9] Yiyu HAN, Anyuan YU, Jianxia LIU et al. Effects of thermochemical models in case of thermochemical nonequilibrium inflow. Journal of Propulsion Technology, 44, 66-79(2023).
[10] PARK C. Nonequilibrium Hypersonic Aerothermodynamics [M]. New Yk: John Wiley & Sons, 1989.
[11] MO Fan, GAO Zhenxun, JIANG Chongwen, et al. Progress in the numerical study on the aerodynamic thermal acteristics of hypersonic vehicles: hightemperature chemical nonequilibrium effect[J]. Cientia Sinica Physica, Mechanica & Astronomica , 2021, 51(10): 104703. (in Chinese)
[12] E THIBERT, F DOMINE. Thermodynamics and kinetics of the solid solution of HCl in ice. The Journal of Physical Chemistry B, 101, 3554-3565(1997).
[13] Zhibo CAO, Yinli XIAO, Wenyan SONG. Effects of premixed gas components on NOx pathways based on chemical reactor network model. Journal of Propulsion Technology, 43, 303-313(2022).
[14] S BIALY, A STERNBERG. CO/H2, C/CO, OH/CO, and OH/O2 in dense interstellar gas: from high ionization to low metallicity. Monthly Notices of The Royal Astronomical Society, 450, 4424-4445(2015).
[15] LUDWIG C B, MALKMUS W, REARDON J E, et al. Hbook of infrared radiation from combustion gases [R]. United States: NASA Marshall Space Fliqht Center Huntsville, 1973.
[16] Zhiru XIAO, Qinlin NIU, Zhenhua WANG et al. Quantitative analysis of the uncertainty of infrared radiation signature of rocket exhaust plume causedby incoming flow. Infrared and Laser Engineering, 52, 20220621(2023).
[17] LUDWIG C B, MALKMUS W, WALKER J, et al. The stard infrared radiation model [C]AIAA 16th Thermophysics Conference, 1981, 81: 1051.
[18] ALVI F, IYER K. Mean unsteady flowfield properties of supersonic impinging jets with lift plates [C]Proceedings of The 5th AIAACEAS Aeroacoustics Conference, 1999: 1829.
[19] SUYKENS J A K, LUKAS L, VEWALLE J. Sparse approximation using least squares suppt vect machines [C] Proceedings of The 2000 IEEE International Symposium on Circuits Systems (ISCAS), 2000, 2: 757760.
[20] DEVIR A, LESSIN A, COHEN Y, et al. Comparison of calculated measured radiation from a rocket mot plume [C]Proceedings of the 39th Aerospace Sciences Meeting, 2001: 358.
[21] P FRANK, T JUST. High temperature reaction rate for H+O2=OH+O and OH+H2=H2O+H. Berichte Der Bunsengesellschaft Für Physikalische Chemie, 89, 181-187(1985).
[22] G L SCHOTT. Further studies of exponential branching rates in reflected-shock heated, nonstoichiometric H2 CO2 systems. Combustion Flame, 21, 357-370(1973).
[23] G STAHL, J WARNATZ. Numerical investigation of time-dependent properties and extinction of strained methane and propane-air flamelets. Combustion and Flame, 85, 285-299(1991).
[24] F P TULLY, A R RAVISHANKARA. Flash photolysis-resonance fluorescence kinetic study of the reactions OH+H2→H2O+H and OH+CH4→H2O+CH3 from 298 to 1020 K. The Journal of Physical Chemistry, 84, 3126-3130(1980).
[25] JR W E WILSON. A critical review of the gas-phase reaction kinetics of the hydroxyl radical. Journal of Physical Chemical Reference Data, 1, 535-573(1972).
[26] E L WONG, A E POTTER. Mass‐spectrometric investigation of the reactions of O atoms with H2 and NH3. The Journal of Chemical Physics, 43, 3371-3382(1965).
[27] F MATZKISE, U MANTHE. Accurate quantum calculations of thermal rate constants employing MCTDH: H2+OH→H+H2O and D2+OH→D+DOH. The Journal of Chemical Physics, 108, 4828-4836(1998).
[28] S K POGREBNYA, J PALMA, D C CLARY et al. Quantum scattering and quasi-classical trajectory calculations for the H2+OH H2O+H reaction on a new potential surface. Physical Chemistry Chemical Physics, 2, 693-700(2000).
[29] A R RAVISHANKARA, J M NICOVICH, R L THOMPSON et al. Kinetic study of the reaction of hydroxyl with hydrogen and deuterium from 250 to 1050 K. The Journal of Physical Chemistry, 85, 2498-2503(1981).
[30] V BUTKOVIĆ, L KLASINC, W BORS. Kinetic study of flavonoid reactions with stable radicals. Journal of Agricultural and Food Chemistry, 52, 2816-2820(2004).
[31] Jr W C GARDINER, W G MALLARD, J H OWEN. Rate constant of OH+H2=H2O+H from 1350 to 1600 K. The Journal of Chemical Physics, 60, 2290-2205(1974).
[32] D W TRAINOR, D O HAM, F KAUFMAN. Gas phase recombination of hydrogen and deuterium atoms. The Journal of Chemical Physics, 58, 4599-4609(1973).
[33] WALKAUSKS L, KAUFMAN F. Gas phase hydrogen atom recombination [C]Proceedings of The Symposium (International) on Combustion, 1975, 15(1): 691699.
[34] A R RAVISHANKARA, R L THOMPSON. Kinetic study of the reaction of OH with CO from 250 to 1040 K. Chemical Physics Letters, 99, 377-381(1983).
[35] VOEN J, PEETERS J, VAN T P J. Rate constant of the elementary reaction of carbon monoxide with hydroxyl radical [C]Proceedings of The Symposium (International) on Combustion, 1975, 15(1): 745753.
[36] A A WESTENBERG, N DEHAAS. Rates of CO+OH and H2+OH over an extended temperature range. The Journal of Chemical Physics, 58, 4061-4065(1973).
[37] M S WOOLDRIDGE, R K HANSON, C T BOWMAN. A shock tube study of CO+OH→CO2+H and HNCO+OH products via simultaneous laser absorption measurements of OH and CO2. International Journal of Chemical Kinetics, 28, 361-372(1996).
[38] J M HALL, E L PETERSEN. An optimized kinetics model for OH chemiluminescence at high temperatures and atmospheric pressures. International Journal of Chemical Kinetics, 38, 714-724(2006).
[39] Y HIDAKA, S TAKAHASHI, H KAWANO et al. Shock-tube measurement of the rate constant for excited hydroxyl (A2. SIGMA. +) formation in the hydrogen-oxygen reaction. The Journal of Physical Chemistry, 86, 1429-1433(1982).
[40] S R SELLEVAG, Y GEORGIEVSKII, J A MILLER. The temperature and pressure dependence of the reactions H+O2(+M)→HO2(+M) and H+OH(+M)→H2O(+M). The Journal of Physical Chemistry A, 112, 5085-5095(2008).
[41] Y BEDJANIAN, B G LE, G POULET. Kinetic study of OH+OH and OD+OD reactions. The Journal of Physical Chemistry A, 103, 7017-7025(1999).