• Laser & Optoelectronics Progress
  • Vol. 56, Issue 11, 110701 (2019)
Menglong Kong, Zhongwei Tan*, and Lin Zhang
Author Affiliations
  • Key Laboratory of All Optical Network and Advanced Telecommunication Network, Ministry of Education, Institute of Lightwave Technology, Beijing Jiaotong University, Beijing 100044, China
  • show less
    DOI: 10.3788/LOP56.110701 Cite this Article Set citation alerts
    Menglong Kong, Zhongwei Tan, Lin Zhang. Application and Implementation of Optical Fourier Transform Based on Optical Fiber[J]. Laser & Optoelectronics Progress, 2019, 56(11): 110701 Copy Citation Text show less
    References

    [1] Papoulis A. Pulse compression, fiber communications, and diffraction: a unified approach[J]. Journal of the Optical Society of America A, 11, 3-13(1994). http://www.ams.org/mathscinet-getitem?mr=1261297

         Papoulis A. Pulse compression, fiber communications, and diffraction: a unified approach[J]. Journal of the Optical Society of America A, 11, 3-13(1994). http://www.ams.org/mathscinet-getitem?mr=1261297

    [2] Berger N K, Levit B, Atkins S et al. Time-lens-based spectral analysis of optical pulses by electrooptic phase modulation[J]. Electronics Letters, 36, 1644-1646(2000). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=871166

         Berger N K, Levit B, Atkins S et al. Time-lens-based spectral analysis of optical pulses by electrooptic phase modulation[J]. Electronics Letters, 36, 1644-1646(2000). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=871166

    [3] Kolner B H, Nazarathy M. Temporal imaging with a time lens[J]. Optics Letters, 14, 630-632(1989). http://www.opticsinfobase.org/abstract.cfm?id=9687

         Kolner B H, Nazarathy M. Temporal imaging with a time lens[J]. Optics Letters, 14, 630-632(1989). http://www.opticsinfobase.org/abstract.cfm?id=9687

    [4] Kolner B H. Space-time duality and the theory of temporal imaging[J]. IEEE Journal of Quantum Electronics, 30, 1951-1963(1994). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=301659

         Kolner B H. Space-time duality and the theory of temporal imaging[J]. IEEE Journal of Quantum Electronics, 30, 1951-1963(1994). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=301659

    [5] Bennett C V, Kolner B H. Principles of parametric temporal imaging: Part I: System configurations[J]. IEEE Journal of Quantum Electronics, 36, 430-437(2000). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=831018

         Bennett C V, Kolner B H. Principles of parametric temporal imaging: Part I: System configurations[J]. IEEE Journal of Quantum Electronics, 36, 430-437(2000). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=831018

    [6] Ng T T, Parmigiani F, Ibsen M et al. Compensation of linear distortions by using XPM with parabolic pulses as a time lens[J]. IEEE Photonics Technology Letters, 20, 1097-1099(2008). http://ieeexplore.ieee.org/document/4531626/

         Ng T T, Parmigiani F, Ibsen M et al. Compensation of linear distortions by using XPM with parabolic pulses as a time lens[J]. IEEE Photonics Technology Letters, 20, 1097-1099(2008). http://ieeexplore.ieee.org/document/4531626/

    [7] Salem R, Foster M A, Turner A C et al. Optical time lens based on four-wave mixing on a silicon chip[J]. Optics Letters, 33, 1047-1049(2008). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=VIRT05000007000007000130000001&idtype=cvips&gifs=Yes

         Salem R, Foster M A, Turner A C et al. Optical time lens based on four-wave mixing on a silicon chip[J]. Optics Letters, 33, 1047-1049(2008). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=VIRT05000007000007000130000001&idtype=cvips&gifs=Yes

    [8] Goda K, Solli D R, Tsia K K et al. Theory of amplified dispersive Fourier transformation[J]. Physical Review A, 80, 043821(2009). http://adsabs.harvard.edu/abs/2009PhRvA..80d3821G

         Goda K, Solli D R, Tsia K K et al. Theory of amplified dispersive Fourier transformation[J]. Physical Review A, 80, 043821(2009). http://adsabs.harvard.edu/abs/2009PhRvA..80d3821G

    [9] Solli D R, Chou J, Jalali B. Amplified wavelength-time transformation for real-time spectroscopy[J]. Nature Photonics, 2, 48-51(2008). http://www.nature.com/nphoton/journal/v2/n1/abs/nphoton.2007.253.html

         Solli D R, Chou J, Jalali B. Amplified wavelength-time transformation for real-time spectroscopy[J]. Nature Photonics, 2, 48-51(2008). http://www.nature.com/nphoton/journal/v2/n1/abs/nphoton.2007.253.html

    [10] Fetterman H R, Tannenwald P E, Parker C D et al. Real-time spectral analysis of far-infrared laser pulses using an SAW dispersive delay line[J]. Applied Physics Letters, 34, 123-125(1979). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4847944

         Fetterman H R, Tannenwald P E, Parker C D et al. Real-time spectral analysis of far-infrared laser pulses using an SAW dispersive delay line[J]. Applied Physics Letters, 34, 123-125(1979). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4847944

    [11] Salem R, Foster M A, Gaeta A L. Application of space-time duality to ultrahigh-speed optical signal processing[J]. Advances in Optics and Photonics, 5, 274-317(2013). http://www.opticsinfobase.org/abstract.cfm?URI=aop-5-3-274

         Salem R, Foster M A, Gaeta A L. Application of space-time duality to ultrahigh-speed optical signal processing[J]. Advances in Optics and Photonics, 5, 274-317(2013). http://www.opticsinfobase.org/abstract.cfm?URI=aop-5-3-274

    [12] Goda K, Jalali B. Dispersive Fourier transformation for fast continuous single-shot measurements[J]. Nature Photonics, 7, 102-112(2013). http://www.nature.com/nphoton/journal/v7/n2/abs/nphoton.2012.359.html

         Goda K, Jalali B. Dispersive Fourier transformation for fast continuous single-shot measurements[J]. Nature Photonics, 7, 102-112(2013). http://www.nature.com/nphoton/journal/v7/n2/abs/nphoton.2012.359.html

    [13] Bao W Q, Yu J L, Wang W R. High-rate optical sampling technology based on photoelectric oscillator[J]. Laser & Optoelectronics Progress, 55, 060701(2018).

         Bao W Q, Yu J L, Wang W R. High-rate optical sampling technology based on photoelectric oscillator[J]. Laser & Optoelectronics Progress, 55, 060701(2018).

    [14] Tong Y C, Chan L Y, Tsang H K. Fibre dispersion or pulse spectrum measurement using a sampling oscilloscope[J]. Electronics Letters, 33, 983-985(1997). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=591605

         Tong Y C, Chan L Y, Tsang H K. Fibre dispersion or pulse spectrum measurement using a sampling oscilloscope[J]. Electronics Letters, 33, 983-985(1997). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=591605

    [15] Muriel M A, Azaña J, Carballar A. Real-time Fourier transformer based on fiber gratings[J]. Optics Letters, 24, 1-3(1999). http://www.ncbi.nlm.nih.gov/pubmed/18071388

         Muriel M A, Azaña J, Carballar A. Real-time Fourier transformer based on fiber gratings[J]. Optics Letters, 24, 1-3(1999). http://www.ncbi.nlm.nih.gov/pubmed/18071388

    [16] Hill K O, Meltz G. Fiber Bragg grating technology fundamentals and overview[J]. Journal of Lightwave Technology, 15, 1263-1276(1997). http://www.emeraldinsight.com/servlet/linkout?suffix=b5&dbid=16&doi=10.1108%2F03321641011014760&key=10.1109%2F50.618320

         Hill K O, Meltz G. Fiber Bragg grating technology fundamentals and overview[J]. Journal of Lightwave Technology, 15, 1263-1276(1997). http://www.emeraldinsight.com/servlet/linkout?suffix=b5&dbid=16&doi=10.1108%2F03321641011014760&key=10.1109%2F50.618320

    [17] Diebold E D, Hon N K, Tan Z W et al. Giant tunable optical dispersion using chromo-modal excitation of a multimode waveguide[J]. Optics Express, 19, 23809(2011). http://europepmc.org/abstract/MED/22109406

         Diebold E D, Hon N K, Tan Z W et al. Giant tunable optical dispersion using chromo-modal excitation of a multimode waveguide[J]. Optics Express, 19, 23809(2011). http://europepmc.org/abstract/MED/22109406

    [18] Hult J, Watt R S, Kaminski C F. High bandwidth absorption spectroscopy with a dispersed supercontinuum source[J]. Optics Express, 15, 11385(2007). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=VIRT05000006000011000009000001&idtype=cvips&gifs=Yes

         Hult J, Watt R S, Kaminski C F. High bandwidth absorption spectroscopy with a dispersed supercontinuum source[J]. Optics Express, 15, 11385(2007). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=VIRT05000006000011000009000001&idtype=cvips&gifs=Yes

    [19] Nuruzzaman A, Boyraz O, Jalali B . Time-stretched short-time Fourier transform[J]. IEEE Transactions on Instrumentation and Measurement, 55, 598-602(2006). http://ieeexplore.ieee.org/document/1608607/

         Nuruzzaman A, Boyraz O, Jalali B . Time-stretched short-time Fourier transform[J]. IEEE Transactions on Instrumentation and Measurement, 55, 598-602(2006). http://ieeexplore.ieee.org/document/1608607/

    [20] Han Y, Jalali B. Photonic time-stretched analog-to-digital converter: fundamental concepts and practical considerations[J]. Journal of Lightwave Technology, 21, 3085-3103(2003). http://www.opticsinfobase.org/abstract.cfm?uri=JLT-21-12-3085

         Han Y, Jalali B. Photonic time-stretched analog-to-digital converter: fundamental concepts and practical considerations[J]. Journal of Lightwave Technology, 21, 3085-3103(2003). http://www.opticsinfobase.org/abstract.cfm?uri=JLT-21-12-3085

    [21] Dorrer C. Single-shot measurement of the electric field of optical waveforms by use of time magnification and heterodyning[J]. Optics Letters, 31, 540-542(2006). http://www.opticsinfobase.org/abstract.cfm?uri=ol-31-4-540

         Dorrer C. Single-shot measurement of the electric field of optical waveforms by use of time magnification and heterodyning[J]. Optics Letters, 31, 540-542(2006). http://www.opticsinfobase.org/abstract.cfm?uri=ol-31-4-540

    [22] Goda K, Tsia K K, Jalali B. Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena[J]. Nature, 458, 1145-1149(2009). http://www.tandfonline.com/servlet/linkout?suffix=CIT0002&dbid=8&doi=10.1080%2F09500340.2018.1499979&key=19407796

         Goda K, Tsia K K, Jalali B. Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena[J]. Nature, 458, 1145-1149(2009). http://www.tandfonline.com/servlet/linkout?suffix=CIT0002&dbid=8&doi=10.1080%2F09500340.2018.1499979&key=19407796

    [23] Shen Y, Chen Z Y, Qiu J R et al. Research progress on parallel spectral domain optical coherence tomography technology[J]. Chinese Journal of Lasers, 45, 0207004(2018).

         Shen Y, Chen Z Y, Qiu J R et al. Research progress on parallel spectral domain optical coherence tomography technology[J]. Chinese Journal of Lasers, 45, 0207004(2018).

    [24] Park Y, Ahn T J, Kieffer J C et al. Optical frequency domain reflectometry based on real-time Fourier transformation[J]. Optics Express, 15, 4597-4616(2007). http://www.opticsinfobase.org/oe/abstract.cfm?id=131858.

         Park Y, Ahn T J, Kieffer J C et al. Optical frequency domain reflectometry based on real-time Fourier transformation[J]. Optics Express, 15, 4597-4616(2007). http://www.opticsinfobase.org/oe/abstract.cfm?id=131858.

    [25] Goda K, Fard A, Malik O et al. High-throughput optical coherence tomography at 800 nm[J]. Optics Express, 20, 19612-19617(2012). http://europepmc.org/abstract/MED/23037013

         Goda K, Fard A, Malik O et al. High-throughput optical coherence tomography at 800 nm[J]. Optics Express, 20, 19612-19617(2012). http://europepmc.org/abstract/MED/23037013

    [26] van Howe J, Xu C. Ultrafast optical signal processing based upon space-time dualities[J]. Journal of Lightwave Technology, 24, 2649-2662(2006). http://ieeexplore.ieee.org/document/1650541/

         van Howe J, Xu C. Ultrafast optical signal processing based upon space-time dualities[J]. Journal of Lightwave Technology, 24, 2649-2662(2006). http://ieeexplore.ieee.org/document/1650541/

    [27] Li B. Novel time lenses and their applications in ultrafast optical signal processing[D]. Beijing: Beijing Jiaotong University(2015).

         Li B. Novel time lenses and their applications in ultrafast optical signal processing[D]. Beijing: Beijing Jiaotong University(2015).

    [28] Ye F. The research of an optical fiber spectrum intensity modulation direct detection transmission system[D]. Wuhan: Huazhong University of Science and Technology(2011).

         Ye F. The research of an optical fiber spectrum intensity modulation direct detection transmission system[D]. Wuhan: Huazhong University of Science and Technology(2011).

    [29] Nakazawa M, Hirooka T, Futami F et al. Ideal distortion-free transmission using optical Fourier transformation and Fourier transform-limited optical pulses[J]. IEEE Photonics Technology Letters, 16, 1059-1061(2004). http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=1281870

         Nakazawa M, Hirooka T, Futami F et al. Ideal distortion-free transmission using optical Fourier transformation and Fourier transform-limited optical pulses[J]. IEEE Photonics Technology Letters, 16, 1059-1061(2004). http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=1281870

    [30] Joseph W[M]. Coodman. Introduction to Fourier optics, 73-77(2011).

         Joseph W[M]. Coodman. Introduction to Fourier optics, 73-77(2011).

    [31] Foster M A, Salem R, Geraghty D F et al. Silicon-chip-based ultrafast optical oscilloscope[J]. Nature, 456, 81-84(2008). http://ieeexplore.ieee.org/xpl/abstractMetrics.jsp?reload=true&tp=&arnumber=4571818

         Foster M A, Salem R, Geraghty D F et al. Silicon-chip-based ultrafast optical oscilloscope[J]. Nature, 456, 81-84(2008). http://ieeexplore.ieee.org/xpl/abstractMetrics.jsp?reload=true&tp=&arnumber=4571818

    [32] Kauffman M T, Banyai W C, Godil A A et al. Time-to-frequency converter for measuring picosecond optical pulses[J]. Applied Physics Letters, 64, 270-272(1994). http://scitation.aip.org/content/aip/journal/apl/64/3/10.1063/1.111177

         Kauffman M T, Banyai W C, Godil A A et al. Time-to-frequency converter for measuring picosecond optical pulses[J]. Applied Physics Letters, 64, 270-272(1994). http://scitation.aip.org/content/aip/journal/apl/64/3/10.1063/1.111177

    [33] Li B, Tan Z W, Zhang X X. Experiment and simulation of time lens using electro-optic phase modulation and cross phase modulation[J]. Acta Physica Sinica, 60, 084204(2011).

         Li B, Tan Z W, Zhang X X. Experiment and simulation of time lens using electro-optic phase modulation and cross phase modulation[J]. Acta Physica Sinica, 60, 084204(2011).

    [34] Mendlovic D, Melamed O, Ozaktas H M. Compact optical temporal processors[J]. Applied Optics, 34, 4113-4118(1995).

         Mendlovic D, Melamed O, Ozaktas H M. Compact optical temporal processors[J]. Applied Optics, 34, 4113-4118(1995).

    [35] Lugt A V. Signal detection by complex spatial filtering[J]. IEEE Transactions on Information Theory, 10, 139-145(1964). http://www.emeraldinsight.com/servlet/linkout?suffix=B6&dbid=16&doi=10.1108%2F02602280010378010&key=10.1109%2FTIT.1964.1053650

         Lugt A V. Signal detection by complex spatial filtering[J]. IEEE Transactions on Information Theory, 10, 139-145(1964). http://www.emeraldinsight.com/servlet/linkout?suffix=B6&dbid=16&doi=10.1108%2F02602280010378010&key=10.1109%2FTIT.1964.1053650

    [36] Weiner A M, Heritage J P, Kirschner E M. High-resolution femtosecond pulse shaping[J]. Journal of the Optical Society of America B, 5, 1563-1572(1988). http://www.opticsinfobase.org/josab/abstract.cfm?uri=josab-5-8-1563

         Weiner A M, Heritage J P, Kirschner E M. High-resolution femtosecond pulse shaping[J]. Journal of the Optical Society of America B, 5, 1563-1572(1988). http://www.opticsinfobase.org/josab/abstract.cfm?uri=josab-5-8-1563

    Menglong Kong, Zhongwei Tan, Lin Zhang. Application and Implementation of Optical Fourier Transform Based on Optical Fiber[J]. Laser & Optoelectronics Progress, 2019, 56(11): 110701
    Download Citation