• Advanced Photonics
  • Vol. 5, Issue 4, 046006 (2023)
Zheng Zhu1、2、3、†, Yuquan Zhang1、*, Shuoshuo Zhang1, Aurèle J. L. Adam3, Changjun Min1, Hendrik Paul Urbach3、*, and Xiaocong Yuan2、1、*
Author Affiliations
  • 1Shenzhen University, Institute of Microscale Optoelectronics and State Key Laboratory of Radio Frequency Heterogeneous Integration, Nanophotonics Research Center, Shenzhen, China
  • 2Research Institute of Intelligent Sensing, Research Center for Humanoid Sensing, Zhejiang Lab, Hangzhou, China
  • 2Shenzhen University, Institute of Microscale Optoelectronics and State Key Laboratory of Radio Frequency Heterogeneous Integration, Nanophotonics Research Center, Shenzhen, China
  • 3Delft University of Technology, Optics Research Group, Delft, The Netherlands
  • show less
    DOI: 10.1117/1.AP.5.4.046006 Cite this Article Set citation alerts
    Zheng Zhu, Yuquan Zhang, Shuoshuo Zhang, Aurèle J. L. Adam, Changjun Min, Hendrik Paul Urbach, Xiaocong Yuan. Nonlinear optical trapping effect with reverse saturable absorption[J]. Advanced Photonics, 2023, 5(4): 046006 Copy Citation Text show less
    References

    [1] A. Ashkin. Acceleration and trapping of particles by radiation pressure. Phys. Rev. Lett., 24, 156-159(1970).

    [2] A. Ashkin, J. Dziedzic, T. Yamane. Optical trapping and manipulation of single cells using infrared laser beams. Nature, 330, 769-771(1987).

    [3] A. Ashkin et al. Observation of a single-beam gradient force optical trap for dielectric particles. Opt. Lett., 11, 288-290(1986).

    [4] K. C. Neuman, S. M. Block. Optical trapping. Rev. Sci. Instrum., 75, 2787-2809(2004).

    [5] Y. Yang et al. Optical trapping with structured light: a review. Adv. Photonics, 3, 034001(2021).

    [6] Y. Yu et al. Roadmap for single-molecule surface-enhanced Raman spectroscopy. Adv. Photonics, 2, 014002(2020).

    [7] A. D. Mehta et al. Single-molecule biomechanics with optical methods. Science, 283, 1689-1695(1999).

    [8] H. Misawa, N. Kitamura, H. Masuhara. Laser manipulation and ablation of a single microcapsule in water. J. Am. Chem. Soc., 113, 7859-7863(1991).

    [9] Y. Q. Jiang, T. Narushima, H. Okamoto. Nonlinear optical effects in trapping nanoparticles with femtosecond pulses. Nat. Phys., 6, 1005-1009(2010).

    [10] Y. Q. Qin et al. Nonlinearity-induced nanoparticle circumgyration at sub-diffraction scale. Nat. Commun., 12, 3722(2021).

    [11] Y. Q. Zhang et al. Nonlinearity-induced multiplexed optical trapping and manipulation with femtosecond vector beams. Nano Lett., 18, 5538-5543(2018).

    [12] B. Sain, C. Meier, T. Zentgraf. Nonlinear optics in all-dielectric nanoantennas and metasurfaces: a review. Adv. Photonics, 1, 024002(2019).

    [13] X. Hao, C. Kuang. Towards extremely high-order optical nonlinearity at the nanoscale. Adv. Photonics, 4, 020501(2022).

    [14] M. Kauranen, A. V. Zayats. Nonlinear plasmonics. Nat. Photonics, 6, 737-748(2012).

    [15] A. E. Minovich et al. Functional and nonlinear optical metasurfaces. Laser Photonics Rev., 9, 195-213(2015).

    [16] G. Wang, A. A. Baker-Murray, W. J. Blau. Saturable absorption in 2D nanomaterials and related photonic devices. Laser Photonics Rev., 13, 1800282(2019).

    [17] L. D. Boni et al. Optical saturable absorption in gold nanoparticles. Plasmonics, 3, 171-176(2008).

    [18] K. Wang et al. Size-related third-order optical nonlinearities of Au nanoparticle arrays. Opt. Express, 18, 13874-13879(2010).

    [19] Y. Gao et al. Saturable absorption and reverse saturable absorption in platinum nanoparticles. Opt. Commun., 251, 429-433(2005).

    [20] H. I. Elim et al. Observation of saturable and reverse-saturable absorption at longitudinal surface plasmon resonance in gold nanorods. Appl. Phys. Lett., 88, 083107(2006).

    [21] U. Gurudas et al. Saturable and reverse saturable absorption in silver nanodots at 532 nm using picosecond laser pulses. J. Appl. Phys., 104, 073107(2008).

    [22] K. Wang et al. Intensity-dependent reversal of nonlinearity sign in a gold nanoparticle array. Opt. Lett., 35, 1560-1562(2010).

    [23] L. W. Tutt, T. F. Boggess. A review of optical limiting mechanisms and devices using organics, fullerenes, semiconductors and other materials. Prog. Quant. Electron., 17, 299-338(1993).

    [24] X. Liu, Q. Guo, J. Qiu. Emerging low-dimensional materials for nonlinear optics and ultrafast photonics. Adv. Mater., 29, 1605886(2017).

    [25] X. Zhang et al. Tunable ultrafast optical switching via waveguided gold nanowires. Adv. Mater., 20, 4455-4459(2008).

    [26] Y. H. Lee et al. Nonlinear optical switching behavior of Au nanocubes and nano-octahedra investigated by femtosecond Z-scan measurements. Appl. Phys. Lett., 95, 023105(2009).

    [27] R. West, Y. Wang, T. Goodson. Nonlinear absorption properties in novel gold nanostructured topologies. J. Phys. Chem. B, 107, 3419-3426(2003).

    [28] R. W. Boyd, Z. Shi, I. D. Leon. The third-order nonlinear optical susceptibility of gold. Opt. Commun., 326, 74-79(2014).

    [29] H. J. Hagemann, W. Gudat, C. Kunz. Optical constants from the far infrared to the X-ray region: Mg, Al, Cu, Ag, Au, Bi, C, and Al2O3. J. Opt. Soc. Am., 65, 742-744(1975). https://doi.org/10.1364/JOSA.65.000742

    [30] B. Richards, E. Wolf. Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system. Proc. R. Soc. London Ser. A, 253, 358-379(1959).

    [31] B. T. Draine. The discrete-dipole approximation and its application to interstellar graphite grains. Astrophys. J., 333, 848-872(1988).

    [32] L. Novotny, B. Hecht. Principles of Nano-Optics(2007).

    [33] T. Iida, H. Ishihara. Theoretical study of the optical manipulation of semiconductor nanoparticles under an excitonic resonance condition. Phys. Rev. Lett., 90, 057403(2003).

    [34] R. Bresolí-Obach et al. Chemical control over optical trapping force at an interface. Adv. Opt. Mater., 10, 2200940(2022).

    [35] J. R. Arias-González, M. Nieto-Vesperinas. Optical forces on small particles: attractive and repulsive nature and plasmon-resonance conditions. J. Opt. Soc. Am. A, 20, 1201-1209(2003).

    [36] S. Albaladejo et al. Scattering forces from the curl of the spin angular momentum of a light field. Phys. Rev. Lett., 102, 113602(2009).

    [37] T. Kudo, S. J Yang, H. Masuhara. A single large assembly with dynamically fluctuating swarms of gold nanoparticles formed by trapping laser. Nano Lett., 18, 5846-5853(2018).

    [38] L. Paterson et al. Controlled rotation of optically trapped microscopic particles. Science, 292, 912-914(2001).

    [39] M. Padgett, R. Bowman. Tweezers with a twist. Nat. Photonics, 5, 343-348(2011).

    [40] A. Bishop et al. Optical microrheology using rotating laser-trapped particles. Phys. Rev. Lett., 92, 198104(2004).

    [41] Y. Arita, M. Mazilu, K. Dholakia. Laser-induced rotation and cooling of a trapped microgyroscope in vacuum. Nat. Commun., 4, 2374(2013).

    [42] J. Ahn et al. Ultrasensitive torque detection with an optically levitated nanorotor. Nat. Nanotechnol., 15, 89-93(2020).

    [43] R. Paschotta. Field Guide to Laser Pulse Generation(2008).

    [44] A. Maheshwari, A. De. Theoretical investigation on nonlinear optical effects in laser trapping of dielectric nanoparticles with ultrafast pulsed excitation. Opt. Express, 24, 21485-21496(2016).

    [45] R. W. Boyd. Nonlinear Optics(2020).

    [46] A. C. Durand et al. Force and torque on an electric dipole by spinning light fields. Phys. Rev. A, 88, 033831(2013).

    [47] Y. Huang et al. Tunable lattice coupling of multipole plasmon modes and near-field enhancement in closely spaced gold nanorod arrays. Sci. Rep., 6, 23159(2016).

    [48] T. Schumacher et al. Nanoantenna-enhanced ultrafast nonlinear spectroscopy of a single gold nanoparticle. Nat. Commun., 2, 333(2011).

    [49] T. Cesca et al. Local-field enhancement effect on the nonlinear optical response of gold-silver nanoplanets. Opt. Express, 20, 4537-4547(2012).

    [50] R. K. Harrison, A. B. Yakar. Role of near-field enhancement in plasmonic laser nanoablation using gold nanorods on a silicon substrate. Opt. Express, 18, 22556-22571(2010).

    [51] D. J. Wu, X. J. Liu. Optimization of silica–silver–gold layered nanoshell for large near-field enhancement. Appl. Phys. Lett., 96, 151912(2010).

    [52] R. R. Anderson, J. A. Parrish. Selective photothermolysis: precise microsurgery by selective absorption of pulsed radiation. Science, 220, 524-527(1983).

    [53] K. M. McPeak et al. Plasmonic films can easily be better: rules and recipes. ACS Photonics, 2, 326-333(2015).

    [54] M. Daimon, A. Masumura. Measurement of the refractive index of distilled water from the near-infrared region to the ultraviolet region. Appl. Opt., 46, 3811-3820(2007).

    [55] W. Huang et al. Effect of the lattice crystallinity on the electron−phonon relaxation rates in gold nanoparticles. J. Phys. Chem. C, 111, 10751-10757(2007).

    [56] M. Hu, G. V. Hartland. Heat dissipation for Au particles in aqueous solution:  relaxation time versus size. J. Phys. Chem. B, 106, 7029-7033(2002).

    [57] G. Baffou, H. Rigneault. Femtosecond-pulsed optical heating of gold nanoparticles. Phys. Rev. B, 84, 035415(2011).

    [58] G. Baffou, R. Quidant. Thermo-plasmonics: using metallic nanostructures as nano-sources of heat. Laser Photonics Rev., 7, 171-187(2013).

    [59] A. J. Schmidt et al. Thermal conductance of hydrophilic and hydrophobic interfaces. J. Phys. Chem. C, 112, 13320-13323(2008).

    [60] Z. Ge, D. G. Cahill, P. V. Braun. Thermal conductance of hydrophilic and hydrophobic interfaces. Phys. Rev. Lett., 96, 186101(2006).

    Zheng Zhu, Yuquan Zhang, Shuoshuo Zhang, Aurèle J. L. Adam, Changjun Min, Hendrik Paul Urbach, Xiaocong Yuan. Nonlinear optical trapping effect with reverse saturable absorption[J]. Advanced Photonics, 2023, 5(4): 046006
    Download Citation