• Infrared and Laser Engineering
  • Vol. 49, Issue 7, 20201018 (2020)
References

[2] Lin Bai, 白林, 李宁, Ning Li, 郭永利, Yongli Guo. Extinction characteristic of the copper powder smoke screen and the comparative trial of the infrared. Ship Electronic Engineering, 29, 161-163(2009).

[3] Shiqing Yang, 阳世清, 徐松林, Songlin Xu, Shouti Yue, 岳守体. Study on the ir interfering smoke agent based on copper powder and high nitrogen energetic materials. Electro-Optic Technology Application, 22-26(2006).

[4] Xiangcui Liu, 刘香翠, Weiping Zhen, 郑卫平. Study on IR extinction characteristic of nano-Ag powder. Infrared Technology, 301-304(2008).

[5] Wenliang Chen, 陈文亮, 滕东晓, Dongxiao Teng, Yuan Ma, 马元. Preparation and application of expanded graphite: A review. Science and Technology Innovation Herald, 6, 111-114(2019).

[6] Mingshan Zhou, 周明善, Ming Xu, 徐铭. Numerical calculation of 3 mm wave extinction for expanded graphite. Acta Phys Sin, 62, 378-384(2013).

[7] X Y Wang, W J Dong, M H Pang. Granular characteristics and infrared extinction coefficients of graphite aerosol. Procedia Engineering, 102, 1238-1244(2015).

[8] 李晓霞, Xiaoxia Li, Jijin Zhao, 赵纪金, 马德跃, Deyue Ma. Preparation and extinction behaviour of expanded graphite to 1.064 micrometer laser. Acta Photonica Sinica, 45, 0414001(2016).

[9] Hongxia Wang, 王红霞, Daizhi Liu, 刘代志, 宋子彪, Zibiao Song. Infrared images shielded characteristics of carbon nano-materials. Chinese Journal of Energetic Materials, 16, 588-591(2008).

[10] P G Appleyard. Infrared extinction performance of high aspect ratio carbon nanoparticles. Journal of Optics A: Pure and Applied Optics, 8, 101-113(2006).

[11] H X Wang, L F Wang, B Xu. Experimental study on extinction performance of carbon nanotubes smoke to infrared radiation. IOP Conference Series: Materials Science and Engineering, 167, 012033(2017).

[12] 赵军, Jun Zhao, 潘功配, Gongpei Pan, 陈昕, Xin Chen. Experimental study on infrared attenuation factors of foam. Acta Optica Sinica, 27, 1883-1888(2007).

[13] , 36, 425-429(2007).

[15] Xiang Wang, 王翔, Jian Yuan, 袁建, 蒋晓军, Xiaojun Jiang. Research on preparation and performance of green camouflage aqueous foam. Acta Armamentarii, 40, 2136-2141(2019).

[16] 孙杜娟, Dujuan Sun, Yihua Hu, 胡以华, 顾有林, Youlin Gu. Determination and model construction of microbes’ complex refractive index in far infrared band. Acta Phys Sin, 62, 094218(2013).

[17] Le Li, 李乐, 胡以华, Yihua Hu, Youlin Gu, 顾有林. Infrared extinction performance of biological materials. Spectroscopy and Spectral Analysis, 37, 115-119(2017).

[18] Zhao X Y, Hu Y H, Gu Y L, et al. The effect of water content of microbial material on the extinction perfmance of infrared b[C] Infrared, MillimeterWave, Terahertz Technologies V, 2018: 1082610.

[19] Youlin Gu, 顾有林, Cheng Wang, 王成, Li Yang, 杨丽. 等. Infrared extinction before and after aspergillus niger spores inactivation. Infrared ad Laser Engineering, 44, 36-41(2015).

[20] Y L Gu, Y H Hu, X Y Zhao. Discrimination of viable and dead microbial materials with Fourier transform infrared spectroscopy in 3-5 micrometers. Opt Express, 26, 15842-15850(2018).

[21] Youlin Gu, 顾有林, Guanghua Cao, 曹光华, Yihua Hu, 胡以华. Measurement of ultraviolet and infrared composite extinction performance of biological materials. Infrared and Laser Engineering, 47, 0321003(2018).

[22] Y L Gu, Y H Hu, X Y Zhao. Determination of infrared complex refractive index of microbial materials. Journal of Quantitative Spectroscopy and Radiative Transfer, 217, 305-314(2018).

[23] Y H Hu, X Y Zhao, Y L Gu. Significant broadband extinction abilities of bioaerosols. Science China Materials, 62, 1033-1045(2019).

[24] X Y Wang, Y H Hu, Y L Gu. Effects of relative humidity on the broadband extinction performance of bioaerosol. Opt Express, 27, 23801-23813(2019).

[25] X Y Wang, Y H Hu, Y L Gu. Analysis of factors affecting the broadband extinction performance of bioaerosol. Optik, 201, 163527(2020).

[26] Hao Chen, 陈浩, 高欣宝, Xinbao Gao, Xingchun Xu, 许兴春. Middle and far infrared interference properties of CNT/graphene/carbon composites smoke screen. Chinese Journal of Energetic Materials, 27, 249-254(2019).

[27] 马德跃, Deyue Ma, 王成名, Chengming. Li Xiaoxia Wang, 李晓霞. Research on preparation and infrared property of graphene and nano-copper composites. Acta Photonica Sinica, 47, 0316002(2018).

[28] 马德跃, Deyue Ma, 李晓霞, Xiaoxia Li, Yuxiang Guo, 郭宇翔. Research on preparation and properties of graphene/copper nickel ferrite composites. Infrared and Laser Engineering, 47, 0921002(2018).

[29] T A Witten, L M Sander. Diffusion-limited aggregation, a kinetic critical phenomenon. Physical Review Letters, 47, 1400-1403(1981).

[30] T A Witten, L M Sander. Diffusion-limited aggregation. Physical Review B, 27, 5686-5697(1983).

[31] 徐澍, Shu Xu, 白连红, Lianhong Bai, Meng Fan, 范萌. Optical properties of soot aggregates and mixture particles with water coatings. Acta Optica Sinica, 37, 0201002(2017).

[32] W Y Sun, W Wang, Y Q Gu. Study on the wax/asphaltene aggregation with diffusion limited aggregation model. Fuel, 191, 106-113(2017).

[33] Y Wu, T H Cheng, L J Zheng. Models for the optical simulations of fractal aggregated soot particles thinly coated with non-absorbing aerosols. Journal of Quantitative Spectroscopy and Radiative Transfer, 182, 1-11(2016).

[34] M Zhang, C Y Deng. Fractal simulation of thin film nucleation growth process using a diffusion-limited aggregation model. Modern Physics Letters B, 32, 1850408(2018).

[35] P Meakin, F Family. Structure and dynamics of reaction-limited aggregation. Physical Review A, 36, 5498-5501(1987).

[36] N Brahma, J B Talbot. Effects of chemical mechanical planarization slurry additives on the agglomeration of alumina nanoparticles II: Aggregation rate analysis. Journal of Colloid and Interface Science, 419, 25-30(2014).

[37] J Wu, B G Liu, Z Y Zhang. Reaction limited aggregation in surfactant-mediated epitaxy. Physical Review B, 61, 13212-13222(2000).

[38] V Runkana, P Somasundaran, P C Kapur. Reaction-limited aggregation in presence of short-range structural forces. Aiche Journal, 51, 1233-1245(2005).

[39] N V Brilliantov, A S Bodrova, P L Krapivsky. A model of ballistic aggregation and fragmentation. Journal of Statistical Mechanics-Theory and Experiment, 6, 06011(2009).

[40] D Bensimon, B Shraiman, S Liang. On the ballistic model of aggregation. Physics Letters A, 102A, 238-240(1984).

[41] S Liang, L P Kadanoff. Scaling in a ballistic aggregation model. Physical Review A, 31, 2628-2630(1985).

[42] Leiting Shao, 邵雷霆, Lianfang Feng, 冯连芳, 许忠斌, Zhongbin Xu. Simulation of dispersion of fractal agglomerates in shear flow fielD. Polymer Materials Science & Engineering, 22, 189-193(2006).

[43] S N Majumdar, K Mallick, S Sabhapandit. Statistical properties of the final state in one-dimensional ballistic aggregation. Physical Review E, 79, 021109(2009).

[44] S Paul, S K Das. Dimension dependence of clustering dynamics in models of ballistic aggregation and freely cooling granular gas. Physical Review E, 97, 032902(2018).

[45] T Mukai, H Ishimoto, T Kozasa. Radiation pressure forces of fluffy porous grains. Astronomy and Astrophysics, 262, 315-320(1992).

[46] T Kozasa, J Blum, T Mukai. Optical-properties of dust aggregates. 1. wavelength dependence. Astronomy and Astrophysics, 263, 423-432(1992).

[47] K Wada, H Tanaka, T Suyama. Collisional growth conditions for dust aggregates. The Astrophysical Journal, 702, 1490-1501(2009).

[48] Wada K, Tanaka H, Suyama T, et al. Numerical Simulation of Dust Aggregate Collisions: Growth disruption of dust aggregates[C]AIP Conference Proceedings, 2009: 103106.

[49] D Paul, S R Das, H S Das. Polarisation properties of comet NEAT C/2001 Q4. Indian Journal of Physics, 84, 623-627(2010).

[50] R C Ball, R M Brady, G Rossi. Anisotropy and cluster growth by diffusion-limited aggregation. Physical Review Letters, 55, 1406-1409(1985).

[51] Dianmo Zhen, 郑典模, Shengan Zhu, 朱升干, 蒋文天, Wentian Jiang. Simulation on flocculation process based on DLCA model and its application. Journal of Nanchang University(Engineering & Technology), 33, 129-133(2011).

[52] Xin Jiang, 蒋新. Simulation of colloidal particles aggregation in presence of diffuse double layer. Journal of Chemical Engineering of Chinese Universities, 18, 33-37(2004).

[53] W R Heinson, C M Sorensen, A Chakrabarti. Does shape anisotropy control the fractal dimension in diffusion-limited cluster-cluster aggregation?. Aerosol Science and Technology, 44, I-Iv(2010).

[54] Y S Cho, Y W Kim, B Kahng. Discontinuous percolation in diffusion-limited cluster aggregation. Journal of Statistical Mechanics-Theory and Experiment, 60, 2547-2571(2012).

[55] D W Jing, S W Hu, Y M Zhang. A modified diffusion-limited cluster aggregation model for accurate prediction of the coagulation and fragmentation process in nanoparticle suspension. Journal of Physics D-Applied Physics, 52, 455305(2019).

[56] S Jungblut, J O Joswig, A Eychmuller. Diffusion-limited cluster aggregation: impact of rotational diffusion. Journal of Physical Chemistry C, 123, 950-954(2019).

[57] R Jullien, M Kolb. Hierarchical model for chemically limited cluster cluster aggregation. Journal of Physics a-Mathematical and General, 17, L639-L643(1984).

[58] R C Ball, D A Weitz, T A Witten. Universal kinetics in reaction-limited aggregation. Physical Review Letters, 58, 274-277(1987).

[59] Hailing Xiong, 熊海灵, 杨志敏, Zhimin Yang, 李航, Hang Li. Coupling effects of diffusive model and sticking model on aggregation kinetics of colloidal particles: a monte carlo simulation study. Acta Physico-Chimica Sinica, 30, 413-422(2014).

[60] D Asnaghi, M Carpineti, M Giglio. Coagulation kinetics and aggregate morphology in the intermediate regimes between diffusion-limited and reaction-limited cluster aggregation. Physical Review A, 45, 1018-1023(1992).

[62] J C Earnshaw, M B J Harrison. Conformal invariance in two-dimensional cluster-cluster aggregation. Physical Review E, 58, 7566-7570(1998).

[63] D Fry, A Mohammad, A Chakrabarti. Cluster shape anisotropy in irreversibly aggregating particulate systems. Langmuir, 20, 7871-7879(2004).

[64] P Meakin, Z R Wasserman. Some universality properties associated with the cluster cluster aggregation model. Physics Letters A, 103A, 337-341(1984).

[65] P Meakin. Structure of the active zone in diffusion-limited aggregation, cluster-cluster aggregation, and the screened-growth model. Physical Review A, 32, 453-459(1985).

[66] 类成新, Chengxin Lei, Huafu Zhang, 张化福, 刘汉法, Hanfa Liu. Study of extinction characteristics of solar radiation by soot aerosols. Acta Optica Sinica, 30, 3373-3377(2010).

[67] Chaojun Huang, 黄朝军, 吴振森, Zhensen Wu, Yafeng Liu, 刘亚锋. Scattering characteristics of aerosol aggregation particles of 1.06μm laser. Infrared and Laser Engineering, 42, 2353-2357(2013).

[68] C Li, H L Xiong. 3D simulation of the Cluster-Cluster Aggregation model. Computer Physics Communications, 185, 3424-3429(2014).

[69] H L Xiong, H Li, W P Chen. Data structure for on-lattice cluster-cluster aggregation model performance optimization. Computer Physics Communications, 185, 836-840(2014).

[70] 徐强, Qiang Xu, 潘丰, Feng Pan, 白进强, Jinqiang Bai. Light scattering characteristics of aerosol particle cluster by discrete-dipole approximation method. Journal of Atmospheric and Environmental Optics, 13, 370-377(2018).

[71] L Y Fan, J W Liao, J S Zuo. Version 4.0 of code Java for 3D simulation of the CCA model. Computer Physics Communications, 228, 290-292(2018).

[72] Xi Chen, 陈曦, 胡以华, Yihua Hu, 顾有林, Youlin Gu. Extinction characteristics of biological aggregated particles in the far infrared band. Infrared and Laser Engineering, 48, 0704002(2019).

[73] P Meakin. Fractal aggregates in geophysics. Reviews of Geophysics, 29, 317-354(1991).

[74] K Wada, H Tanaka, T Suyama. Numerical simulation of dust aggregate collisions. i. compression and disruption of two‐dimensional aggregates. The Astrophysical Journal, 661, 320-333(2007).

[75] K Wada, H Tanaka, T Suyama. Numerical simulation of dust aggregate collisions. II. Compression and disruption of three-dimensional aggregates in head-on collisions. Astrophysical Journal, 677, 1296-1308(2008).

[76] L Kolokolova, H Kimura. Comet dust as a mixture of aggregates and solid particles: model consistent with ground-based and space-mission results. Earth Planets and Space, 62, 17-21(2010).

[77] R Tazaki, H Tanaka, S Okuzumi. Light scattering by fractal dust aggregates. i. angular dependence of scattering. Astrophysical Journal, 823, 1-16(2016).

[78] V G Mie. Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Annalen der Physik, 330, 377-445(1908).

[79] Xuanyu Wang, 王玄玉, 宋黎, Li Song, 程乐见, Lejian Cheng. Study on particle size distribution and far infrared extinction factors of graphite aerosol. China Powder Science And Technology, 15, 34-36(2009).

[80] 李乐, Le Li, 胡以华, Yihua Hu, 顾有林, Youlin Gu. Infrared extinction performance of Aspergillus niger spores. Infrared and Laser Engineering, 43, 127-131(2014).

[81] 张自嘉, Zijia Zhang, Qi Pan, 潘琦, Haixiu Chen, 陈海秀. Mie scattering of electromagnetic waves by charged sphere particle. Chinese Journal of Radio Science, 30, 429-436(2015).

[82] Chenghua Fu, 付成花. Analysis of optical scattering of micro-nano particles. Acta Physica Sinica, 66, 097301(2017).

[83] 程洁, Jie Cheng, 王湘宁, Xiangning Wang, 肖永亮, Yongliang Xiao. Simulation of scattering characteristics of micro-and nano-scale defects in sapphire wafer. Chinese Journal of Lasers, 46, 0404001(2019).

[84] Yiying Lv, 吕依颖, Shan Gao, 高珊, Qingjun Xu, 徐庆君. Scattering characteristics of C@H_2O composite particle based on mie light scattering theory. Chinese Journal of Luminescence, 40, 298-303(2019).

[85] 徐捷, Jie Xu, Baozhen Ge, 葛宝臻. Simulation and analysis of polarization properties of single particle light scattering. Acta Optica Sinica, 39, 413-421(2019).

[86] H Devoe. Optical properties of molecular aggregates. I. classical model of electronic absorption and refraction. Journal of Chemical Physics, 41, 393-400(1964).

[87] E M Purcell, C R Pennypacker. Scattering and absorption of light by nonspherical dielectric grains. The Astrophysical Journal, 186, 705-714(1973).

[88] B T Draine, J Goodman. Beyond Clausius-Mossotti-Wave propagation on a polarizable point lattice and the discrete dipole approximation. Astrophysical Journal, 405, 685-697(1993).

[89] B T Draine. The discrete-dipole approximation and its application to interstellar graphite grains. JOSA A, 333, 1491-1499(1988).

[90] Chaojun Huang, 黄朝军, Yafeng Liu, 刘亚锋, 孙彦清, Yanqing Sun. Using the DDA method to calculate aerosol optical characteristics. Journal of Atomic and Molecular Physics, 26, 945-949(2009).

[91] 王红霞, Hongxia Wang, Jin Ma, 马进, Zhanrong Zhou, 周战荣. Infrared extinction properties of randomly oriented nano-graphite ellipsoid particles. The Journal of Light SCattering, 22, 339-343(2010).

[92] 类成新, Chengxin Lei, 吴振森, Zhensen Wu, 冯东太, Dongtai Feng. Radiative properties of internal/external mixture of agglomerates in random orientation. Infrared and Laser Engineering, 42, 2692-2696(2013).

[93] Jianbin Liu, 刘建斌, Yingxin Zeng, 曾应新, Chuping Yang, 杨初平. Light scattering study of biological cells with the discrete dipole approximation. Infrared and Laser Engineering, 43, 2204-2208(2014).

[94] 宋跃辉, Yuehui Song, 鲁雷雷, Leilei Lu, Shichun Li, 李仕春. Analysis of light scattering properties of non-spherical aerosol particles. Journal of Xi’an University of Technology, 33, 233-239(2017).

[95] 胡以华, Yihua Hu, Baokun Huang, 黄宝锟, Youlin Gu, 顾有林. Model construction of biological particles' average extinction efficiency factor in far infrared band. Infrared and Laser Engineering, 47, 1004003(2018).

[96] P C Waterman. Symmetry, unitarity, and geometry in electromagnetic scattering. Physical Review D, 3, 825-839(1971).

[97] V Q Sang, V Q Sang, Peng Feng, 冯鹏, 米德伶, Deiling Mi. Research on properties of light scattering for non-spherical suspended particles in water based on T matrix model. Spectroscopy and Spectral Analysis, 35, 2691-2696(2015).

[98] Su Zhang, 张肃, 彭杰, Jie Peng, Juntong Zhan, 战俊彤. Research of the influence of non-spherical ellipsoid particle parameter variation on polarization characteristic of light. Acta Physica Sinica, 65, 064205(2016).

[99] 殷金英, Jinying Yin, 郑宇浓, Yunong Zheng, Hongyan Yang, 杨洪艳. Effect of relative humidity of atmospheric aerosol on radiation properties of soot aggregate. Acta Optica Sinica, 37, 0529001(2017).

[100] Lijuan Zheng, 郑利娟, 程天海, Tianhai Cheng, Yu Wu, 吴俣. Effect of aggregated black carbon aging on infrared absorption and longWave radiative forcing. Acta Physica Sinica, 66, 169201(2017).

[101] 米利, Li Mi, Hongwei Zhou, 周宏伟, Zhiwei Sun, 孙祉伟. The use of T -matrix method for determining coagulation rate of colloidal particles in light scattering measurement. Acta Physica Sinica, 62, 377-383(2013).

[102] R Spurr, J Wang, J Zeng. Linearized T-matrix and Mie scattering computations. Journal of Quantitative Spectroscopy and Radiative Transfer, 113, 425-439(2012).

[103] Taifei Zhao, 赵太飞, Yuxin Leng, 冷昱欣, Siting Zhao, 赵思婷. Research on ultraviolet scattering characteristics of haze particles. Spectroscopy and Spectral Analysis, 38, 837-843(2018).

[104] K S Yee. Numerical solution of initial boundary value problems involving Maxwell equations in isotropic media. IEEE Transactions on Antennas and Propagation, 14, 302-307(1966).

[105] W B Sun, N G Loeb, Q Fu. Finite-difference time-domain solution of lightscattering and absorption by particlesin an absorbing medium. Applied Optics, 41, 5728-5743(2002).

[107] Jianxiao Liu, 刘建晓, 张郡亮, Junliang Zhang, Mingmin Su, 苏明敏. Finite-difference time domain method for the analysis of radar scattering characteristic of metal target coated with anisotropic ferrite. Acta Physica Sinica, 63, 137501(2014).

[108] 张晓锋, Xiaofeng Zhang, Wei Zhou, 周伟. Analysis of Ag nanosphere and array's LSPR phenomena based on DDA and FDTD method. Chinese Medical Equipment Journal, 35, 1-5(2014).

[109] Shitong Wang, 王世通, 杨甬英, Yongying Yang, 赵丽敏, Limin Zhao. Numerical simulation research on scattering light imaging of surface defects of optical components. Chinese Journal of Lasers, 42, 0708005(2015).

[110] 杨利霞, Lixia Yang, 李玲玲, Lingling Li, Ting Zhu, 朱婷. Terahertz electromagnetic characteristics of one-dimensional graphene-photonic crystal by FDTD method. Chinese Journal of Radio Science, 31, 262-268(2016).

[111] Dong Wan, 宛栋, 王浩, Hao Wang, Lanmei Gao, 高兰妹. Light scattering from cancer cells in different phases of cell cycle. Laser Journal, 40, 25-28(2019).

CLP Journals

[1] Youlin Gu, Xi Zhang, Yihua Hu, Fanhao Meng, Guolong Chen, Wanying Ding, Haihao He. Research progress of aerosol particle aggregation model (invited)[J]. Infrared and Laser Engineering, 2023, 52(6): 20230243

[2] Youlin Gu, Guolong Chen, Yihua Hu, Haihao He, Wanying Ding, Hao Cao. Research progress on the deposition and diffusion of aerosols (invited)[J]. Infrared and Laser Engineering, 2022, 51(7): 20220313