• Chinese Journal of Quantum Electronics
  • Vol. 41, Issue 3, 485 (2024)
ZHANG Xuanbo, LI Shoujie, LI Ying, TIAN Ye..., YE Wangquan*, GUO Jinjia, ZHENG Ronger and LU Yuan|Show fewer author(s)
Author Affiliations
  • College of Physics and Optoelectronic Engineering, Ocean University of China, Qingdao 266100, China
  • show less
    DOI: 10.3969/j.issn.1007-5461.2024.03.010 Cite this Article
    Xuanbo ZHANG, Shoujie LI, Ying LI, Ye TIAN, Wangquan YE, Jinjia GUO, Ronger ZHENG, Yuan LU. Quantitative analysis of Cu‐Zn alloys using CF‐LIBS with self‐absorption correction in a quasi‐optically thin state[J]. Chinese Journal of Quantum Electronics, 2024, 41(3): 485 Copy Citation Text show less
    Schematic diagram of LIBS experimental setup
    Fig. 1. Schematic diagram of LIBS experimental setup
    Intensity-ratio Copper of copper double lines under different experimental conditions in three alloy samples. (a) Cu25%Zn75%; (b) Cu5%Zn95%; (c) Cu1%Zn99%
    Fig. 2. Intensity-ratio Copper of copper double lines under different experimental conditions in three alloy samples. (a) Cu25%Zn75%; (b) Cu5%Zn95%; (c) Cu1%Zn99%
    Temperature difference of copper-zinc in three alloy samples and Boltzmann plots for the state under the minimum temperature difference. (a) Cu25%Zn75%; (b) Cu5%Zn95%; (c) Cu1%Zn99%
    Fig. 3. Temperature difference of copper-zinc in three alloy samples and Boltzmann plots for the state under the minimum temperature difference. (a) Cu25%Zn75%; (b) Cu5%Zn95%; (c) Cu1%Zn99%
    Self-absorption coefficient variation of Cu (I) 324.8 nm of three alloy samples under different experimental conditions. (a) Cu25%Zn75%; (b) Cu5%Zn95%; (c) Cu1%Zn99%
    Fig. 4. Self-absorption coefficient variation of Cu (I) 324.8 nm of three alloy samples under different experimental conditions. (a) Cu25%Zn75%; (b) Cu5%Zn95%; (c) Cu1%Zn99%
    CF-LIBS results of Zn/Cu concentration ratio in three alloy samples under different experimental conditionds. (a) Cu25%Zn75%; (b) Cu5%Zn95%; (c) Cu1%Zn99%
    Fig. 5. CF-LIBS results of Zn/Cu concentration ratio in three alloy samples under different experimental conditionds. (a) Cu25%Zn75%; (b) Cu5%Zn95%; (c) Cu1%Zn99%
    Wavelength / nmAki / s-1gkEi / eVEk / eV
    515.32356.00 × 10743.796.19
    521.82027.50 × 10763.826.19
    Table 1. Physical parameters of the selected copper double‐line
    ElementWavelength/nmAki / s-1gkEk / eV
    Cu I216.50935.50 × 10745.724709
    217.89449.10 × 10745.688311
    218.1729.90 × 10725.681073
    276.63719.60 × 10646.122705
    282.4377.80 × 10665.777459
    296.11653.76 × 10685.574734
    324.7541.40 × 10843.816692
    327.39571.38 × 10823.785898
    510.55412.00 × 10643.816692
    515.32356.00 × 10746.191175
    521.82027.50 × 10766.192025
    570.0242.40 × 10543.816692
    578.21321.65 × 10623.785898
    Zn I213.85737.14 × 10835.795691
    307.58973.80 × 10434.02966
    328.23259.00 × 10737.782333
    330.25821.20 × 10857.782738
    334.50131.70 × 10877.783354
    636.23454.70 × 10757.743871
    Table 2. Physical parameters of copper and zinc atomic lines
    Xuanbo ZHANG, Shoujie LI, Ying LI, Ye TIAN, Wangquan YE, Jinjia GUO, Ronger ZHENG, Yuan LU. Quantitative analysis of Cu‐Zn alloys using CF‐LIBS with self‐absorption correction in a quasi‐optically thin state[J]. Chinese Journal of Quantum Electronics, 2024, 41(3): 485
    Download Citation