• Opto-Electronic Engineering
  • Vol. 47, Issue 5, 190075 (2020)
Geng Xingning1、2, Li Jining1、2、*, Xu Degang1、2, Liu Chang3, Fan Xiaoli3, and Yao Jianquan1、2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    DOI: 10.12086/oee.2020.190075 Cite this Article
    Geng Xingning, Li Jining, Xu Degang, Liu Chang, Fan Xiaoli, Yao Jianquan. Terahertz wave propagation and imaging detection characteristics in plasma[J]. Opto-Electronic Engineering, 2020, 47(5): 190075 Copy Citation Text show less
    References

    [1] Yao J Q. Introduction of THz-wave and its applications[J]. Journal of Chongqing University of Posts and Telecommunications (Natural Science Edition), 2010, 22(6): 703–707.

    [2] Bu F L, Xing H Y. Progress of Terahertz spectroscopy[J]. Journal of Electronic Measurement and Instrument, 2009, 23(4): 1–6.

    [3] Chang S L, Wang X F, Shao Z Z. Terahertz spectrum and its application[J]. National Defense Science & Technology, 2015, 36(2): 17–22.

    [4] Zhang D W, Yuan J M. Introduction to Terahertz technology[J]. National Defense Science & Technology, 2015, 36(2): 12–16.

    [5] Yao J Q, Zhong K, Xu D G. Study and outlook of Terahertz space applications[J]. Space Electronic Technology, 2013, 10(2): 1–16.

    [6] Liu F, Zhu Z B, Cui W Z, et al. Application of Terahertz techniques in space science[J]. Journal of Terahertz Science and Electronic Information Technology, 2013, 11(6): 857–866.

    [7] Garg P, Dodiyal A K. Reducing RF blackout during re-entry of the reusable launch vehicle[C]//Proceedings of 2009 IEEE Aerospace Conference, 2009: 918–932.

    [8] Gillman E D, Foster J E, Blankson I M. Review of leading approaches for mitigating hypersonic vehicle communications blackout and a method of ceramic particulate injection via cathode spot arcs for blackout mitigation[R]. NASA/TM-2010-216220, E-17194, NASA Glenn Research Center, Cleveland, OH, United States, 2010.

    [9] Huber P W, Evans J S, Schexnayder Jr C J. Comparison of theoretical and flight-measured ionization in a blunt body re-entry flowfield[J]. AIAA Journal, 1971, 9(6): 1154–1162.

    [10] Vidmar R J. Generation of tenuous plasma clouds in the Earth's atmosphere[R]. Annual Report, SRI International Corp., Menlo Park, CA, United States, 1987.

    [11] Gregoire D J, Santoru J, Schurnacher R W. Electromagnetic-wave propagation in unmagnetized plasmas[R]. Final Report, Hughes Research Labs., Malibu, CA, United States, 1992.

    [12] Jamison S P, Shen J L, Jones D R, et al. Plasma characterization with terahertz time–domain measurements[J]. Journal of Applied Physics, 2003, 93(7): 4334–4336.

    [13] Liu J L, Zhang X C. Plasma characterization using terahertz-wave-enhanced fluorescence[J]. Applied Physics Letters, 2010, 96(4): 041505.

    [14] Liu J F, Xi X L, Wan G B, et al. Simulation of electromagnetic wave propagation through plasma sheath using the moving-window finite-difference time-domain method[J]. IEEE Transactions on Plasma Science, 2011, 39(3): 852–855.

    [15] Jiang J, Chen C X, Wang C, et al. Properties of Terahertz wave propagation in inhomogeneous plasma sheath[J]. Journal of System Simulation, 2015, 27(12): 3109–3115.

    [16] Zhou T X, Chen C X, Jiang J, et al. Terahertz wave propagation in magnetized plasma sheath[J]. High Power Laser and Particle Beams, 2016, 28(7): 073101.

    [17] Xia X R, Yin C Y, Wang G M. Electromagnetic characteristic analysis of non-uniform magnetized plasma slab[J]. Aerospace Shanghai, 2008, 25(6): 8–11, 19.

    [18] Ma P, Qin L, Shi A H, et al. Millimeter wave and terahertz wave transmission characteristics in plasma[J]. High Power Laser and Particle Beams, 2013, 25(11): 2965–2970.

    [19] Gürel C S, ?ncü E. Frequency selective characteristics of a plasma layer with sinusoidally varying electron density profile[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2009, 30(6): 589–597.

    [20] Soltanmoradi E, Shokri B, Siahpoush V. Study of electromagnetic wave scattering from an inhomogeneous plasma layer using Green's function volume integral equation method[J]. Physics of Plasmas, 2016, 23(3): 033304.

    [21] Zhao L, Bao W M, Gong C Y. An overview of the research of plasma sheath[J]. Advanced Materials Research, 2014, 1049-1050: 1518–1521.

    [22] Gal G, Gibson W. Interaction of electromagnetic waves with cylindrical plasma[J]. IEEE Transactions on Antennas and Propagation, 1968, 16(4): 468–475.

    [23] Zheng L, Zhao Q, Liu S Z, et al. Studies of terahertz wave propagation in non-magnetized plasma[J]. Acta Physica Sinica, 2012, 61(24): 373–379.

    [24] Yuan Z C, Shi J M, Wang J C. Experimental studies of the interaction of microwaves with mixture burning plasmas in the atmosphere[J]. High Power Laser and Particle Beams, 2005, 17(5): 707–710.

    [25] He X, Chen J P, Ni X W, et al. Attenuation of planar electromagnetic waves by inhomogeneous plasma[J]. High Power Laser and Particle Beams, 2010, 22(9): 2115–2118.

    [26] Ma H J, Wang G L, Luo J, et al. Experimental study of electromagnetic wave transmission characteristics in S–Ka band in plasma[J]. Acta Physica Sinica, 2018, 67(2): 164–171.

    [27] Wu R H, Liu H Y, Liu J Q, et al. Experiment on influence of the communication signals transmission in plasma sheath[J]. Journal of Beijing University of Aeronautics and Astronautics, 2013, 39(11): 1437–1442.

    [28] Liu F, Liu J F, Gong C R, et al. Transmission of Terahertz waves in plasma sheath[J]. Space Electronic Technology, 2013(4): 10–12.

    [29] Chen X Y, Shen F F, Liu Y M, et al. Improved scattering-matrix method and its application to analysis of electromagnetic wave reflected by reentry plasma sheath[J]. IEEE Transactions on Plasma Science, 2018, 46(5): 1755–1767.

    [30] Li W H, Tian C, Feng S S, et al. Advance in atmospheric pressure plasma jet and its applications[J]. Chinese Journal of Vacuum Science and Technology, 2018, 38(8): 695–707.

    [31] van Gessel A F H, Carbone E A D, Bruggeman P J, et al. Laser scattering on an atmospheric pressure plasma jet: disentangling Rayleigh, Raman and Thomson scattering[J]. Plasma Sources Science and Technology, 2012, 21(1): 015003.

    [32] Hübner S, Sousa J S, Puech V, et al. Electron properties in an atmospheric helium plasma jet determined by Thomson scattering[J]. Journal of Physics D: Applied Physics, 2014, 47(43): 432001.

    [33] He Y X, Wang Y Y, Xu D G, et al. High-energy and ultra-wideband tunable terahertz source with DAST crystal via difference frequency generation[J]. Applied Physics B, 2018, 124(1): 16.

    [34] Ando A, Kurose T, Reymond V, et al. Electron density measurement of inductively coupled plasmas by terahertz time-domain spectroscopy (THz-TDS)[J]. Journal of Applied Physics, 2011, 110(7): 073303.

    Geng Xingning, Li Jining, Xu Degang, Liu Chang, Fan Xiaoli, Yao Jianquan. Terahertz wave propagation and imaging detection characteristics in plasma[J]. Opto-Electronic Engineering, 2020, 47(5): 190075
    Download Citation