• Infrared and Laser Engineering
  • Vol. 52, Issue 7, 20230377 (2023)
Yimei Tan1,2, Shuo Zhang2, Yuning Luo1,2, Qun Hao1..., Menglu Chen1, Yanfei Liu2 and Xin Tang1|Show fewer author(s)
Author Affiliations
  • 1School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
  • 2Zhongxinrecheng Science and Technology Co., Ltd., Beijing 101102, China
  • show less
    DOI: 10.3788/IRLA20230377 Cite this Article
    Yimei Tan, Shuo Zhang, Yuning Luo, Qun Hao, Menglu Chen, Yanfei Liu, Xin Tang. 640×512 HgTe colloidal quantum-dot mid-wave infrared focal plane array (invited)[J]. Infrared and Laser Engineering, 2023, 52(7): 20230377 Copy Citation Text show less
    References

    [1] Y Jiang, S Karpf, B Jalali. Time-stretch lidar as a spectrally scanned time-of-flight ranging camera. Nature Photonics, 14, 14-18(2020).

    [2] J Liu, J Dai, S L Chin, et al. Broadband terahertz wave remote sensing using coherent manipulation of fluorescence from asymmetrically ionized gases. Nature Photonics, 4, 627-631(2010).

    [3] X Tang, M M Ackerman, P Guyot-sionnest. Thermal imaging with plasmon resonance enhanced HgTe colloidal quantum dot photovoltaic devices. ACS Nano, 12, 7362-7370(2018).

    [4] X Tang, M M Ackerman, M Chen, et al. Dual-band infrared imaging using stacked colloidal quantum dot photodiodes. Nature Photonics, 13, 277-282(2019).

    [5] M M Ackerman, X Tang, P Guyot-sionnest. Fast and sensitive colloidal quantum dot mid-wave infrared photodetectors. ACS Nano, 12, 7264-7271(2018).

    [6] A Rogalski. History of infrared detectors. Opto-electronics Review, 20, 279-308(2012).

    [7] S Keuleyan, E Lhuillier, P Guyot-sionnest. Synthesis of colloidal HgTe quantum dots for narrow mid-IR emission and detection. Journal of the American Chemical Society, 133, 16422-16424(2011).

    [8] H Zhang, J C Peterson, P Guyot-sionnest. Intraband transition of HgTe nanocrystals for long-wave infrared detection at 12 μm. ACS Nano, 17, 7530-7538(2023).

    [9] T Rauch, M Böberl, S F Tedde, et al. Near-infrared imaging with quantum-dot-sensitized organic photodiodes. Nature Photonics, 3, 332-336(2009).

    [10] S Goossens, G Navickaite, C Monasterio, et al. Broadband image sensor array based on graphene–CMOS integration. Nature Photonics, 11, 366-371(2017).

    [11] J Liu, P Liu, D Chen, et al. A near-infrared colloidal quantum dot imager with monolithically integrated readout circuitry. Nature Electronics, 5, 443-451(2022).

    [12] Buurma C, Pimpinella R E, Ciani A J, et al. MWIR imaging with low cost colloidal quantum dot films[C]Optical Sensing, Imaging, Photon Counting: Nanostructured Devices Applications 2016, 9933: 993303.

    [13] S Zhang, C Bi, T Qin, et al. Wafer-scale fabrication of CMOS-compatible trapping-mode infrared imagers with colloidal quantum dots. ACS Photonics, 10, 673-682(2023).

    [14] S Zhang, C Bi, Y Tan, et al. Direct optical lithography enabled multispectral colloidal quantum-dot imagers from ultraviolet to short-wave infrared. ACS Nano, 16, 18822-18829(2022).

    [15] S Keuleyan, E Lhuillier, V Brajuskovic, et al. Mid-infrared HgTe colloidal quantum dot photodetectors. Nature Photo-nics, 5, 489-493(2011).

    [16] X Lan, M Chen, M H Hudson, et al. Quantum dot solids showing state-resolved band-like transport. Nature Mate-rials, 19, 323-329(2020).

    [17] G Charlie, D David, P Victor, et al. Photoconductive focal plane array based on HgTe quantum dots for fast and cost-effective short-wave infrared imaging. Nanoscale, 26, 9359-9368(2022).

    Yimei Tan, Shuo Zhang, Yuning Luo, Qun Hao, Menglu Chen, Yanfei Liu, Xin Tang. 640×512 HgTe colloidal quantum-dot mid-wave infrared focal plane array (invited)[J]. Infrared and Laser Engineering, 2023, 52(7): 20230377
    Download Citation