• Acta Optica Sinica
  • Vol. 40, Issue 16, 1616001 (2020)
Yang Tang1、2、*
Author Affiliations
  • 1Center for Green Energy and Architecture, China Energy, Beijing 102211, China
  • 2National Institute of Clean-and-Low-Carbon Energy, Beijing 102211, China
  • show less
    DOI: 10.3788/AOS202040.1616001 Cite this Article Set citation alerts
    Yang Tang. Fast Electrochemical Deposition and Non-Radiative Recombination of ZnO Nanorods[J]. Acta Optica Sinica, 2020, 40(16): 1616001 Copy Citation Text show less
    References

    [1] Li X, Zhao Y H, Peng H et al. Solar cells with surface modified Cs-doped ZnO nanorod array as electron transporting layer[J]. Acta Optica Sinica, 38, 0731001(2018).

    [2] Hu Y, Li H L, Wang D K et al. Surface modification and optical properties of ZnO nanowires[J]. Chinese Journal of Lasers, 45, 1003002(2018).

    [3] Guo D S, Chen Z N, Wang D K et al. Effects of annealing temperature on crystal quality and photoelectric properties of Al-doped ZnO thin film[J]. Chinese Journal of Lasers, 46, 0403002(2019).

    [4] Wang W, Zhang F C, Yan J F et al. Synthesis and optical properties of nano-ZnO at low temperature[J]. Laser & Optoelectronics Progress, 55, 071603(2018).

    [5] Kumar A, Huang N, Staedler T et al. Mechanical characterization of aluminum doped zinc oxide (Al∶ZnO) nanorods prepared by sol-gel method[J]. Applied Surface Science, 265, 758-763(2013).

    [6] Chen Z W, Zhan G H, Wu Y P et al. Sol-gel-hydrothermal synthesis and conductive properties of Al-doped ZnO nanopowders with controllable morphology[J]. Journal of Alloys and Compounds, 587, 692-697(2014).

    [7] Tang Y, Chen J. Optical band gap blue shift and Stokes shift in Al-doped ZnO nanorods by electrodeposition[J]. Chinese Journal of Luminescence, 35, 1165-1171(2014).

    [8] Chen J, Ye H, Aé L et al. Tapered aluminum-doped vertical zinc oxide nanorod arrays as light coupling layer for solar energy applications[J]. Solar Energy Materials and Solar Cells, 95, 1437-1440(2011).

    [9] Tang Y, Chen J, Greiner D et al. Fast growth of high work function and high-quality ZnO nanorods from an aqueous solution[J]. The Journal of Physical Chemistry C, 115, 5239-5243(2011).

    [10] Guo L D, Tang Y, Chiang F K et al. Density-controlled growth and passivation of ZnO nanorod arrays by electrodeposition[J]. Thin Solid Films, 638, 426-432(2017).

    [11] Tang Y, Guo L D, Zhang Z G et al. Aluminium doping and optical property control of electrodeposited zinc oxide nanorods induced by ammonium nitrate[J]. Optics and Precision Engineering, 23, 1288-1296(2015).

    [12] Kim C E, Moon P, Kim S et al. Effect of carrier concentration on optical bandgap shift in ZnO∶Ga thin films[J]. Thin Solid Films, 518, 6304-6307(2010).

    [13] Tang Y, Zhao Y, Zhang Z G et al. Hydrothermal synthesis and properties of ZnO nanorod arrays[J]. Chinese Journal of Materials Research, 29, 529-534(2015).

    [14] Sagar P, Shishodia P K, Mehra R M et al. Photoluminescence and absorption in sol-gel-derived ZnO films[J]. Journal of Luminescence, 126, 800-806(2007).

    [15] Zhao Y, Tang Y, Han Z H. Low-temperature rapid syntheses of high-quality ZnO nanostructure arrays induced by ammonium salt[J]. Chemical Physics Letters, 668, 47-55(2017).

    Yang Tang. Fast Electrochemical Deposition and Non-Radiative Recombination of ZnO Nanorods[J]. Acta Optica Sinica, 2020, 40(16): 1616001
    Download Citation