[1] T. H. Maiman. Stimulated optical radiation in ruby. Nature, 187, 493-494(1960).
[2] C. Krankel et al. Out of the blue: semiconductor laser pumped visible rare-earth doped lasers. Laser Photonics Rev., 10, 548-568(2016).
[3] A. Richter et al. Continuous-wave ultraviolet generation at 320 nm by intracavity frequency doubling of red-emitting praseodymium lasers. Opt. Express, 14, 3282-3287(2006).
[4] J. Zou et al. 3.6 W compact all-fiber Pr3+-doped green laser at 521 nm. Adv. Photonics, 4, 056001(2022). https://doi.org/10.1117/1.AP.4.5.056001
[5] T. J. Carrig, A. M. Schober. Mid-infrared lasers. IEEE Photonics J., 2, 207-212(2010).
[6] A. Penzkofer. Passive Q-switching and mode-locking for the generation of nanosecond to femtosecond pulses. Appl. Phys. B-Photophys. Laser Chem., 46, 43-60(1988).
[7] H. Mao et al. Noncritical quasiphase-matched second harmonic generation in LiB3O5 crystal at room temperature. Appl. Phys. Lett., 61, 1148-1150(1992). https://doi.org/10.1063/1.107628
[8] S. Zhu, Y. Y. Zhu, N. B. Ming. Quasi-phase-matched third-harmonic generation in a quasi-periodic optical superlattice. Science, 278, 843-846(1997).
[9] S. Wang et al. High efficiency nanosecond passively Q-switched 2.3 μm Tm:YLF laser using a ReSe2-based saturable output coupler. OSA Contin., 2, 1676-1682(2019). https://doi.org/10.1364/OSAC.2.001676
[10] T. Y. Fan, R. L. Byer. Diode laser-pumped solid-state lasers. IEEE J. Quantum Electron., 24, 895-912(1988).
[11] L. F. Johnson, R. E. Dietz, H. J. Guggenheim. Optical maser oscillation from Ni2+ in MgF2 involving simultaneous emission of phonons. Phys. Rev. Lett., 11, 318-320(1963). https://doi.org/10.1103/PhysRevLett.11.318
[12] F. Liang et al. Multiphonon-assisted lasing beyond the fluorescence spectrum. Nat. Phys., 18, 1312-1316(2022).
[13] S. Smolorz, F. Wise. Femtosecond two-beam coupling energy transfer from Raman and electronic nonlinearities. J. Opt. Soc. Am. B, 17, 1636-1644(2000).
[14] G. Blasse. Vibronic transitions in rare earth spectroscopy. Int. Rev. Phys. Chem., 11, 71-100(1992).
[15] Y. B. Chung, I. W. Lee, D. J. Jang. Ultrafast lattice vibrational-relaxation of optically-excited f-centers in RBCL at 4.2 K. Opt. Commun., 86, 41-44(1991).
[16] D. B. Straus et al. Direct observation of electron-phonon coupling and slow vibrational relaxation in organic-inorganic hybrid perovskites. J. Am. Chem. Soc., 138, 13798-13801(2016).
[17] D. Y. Tzou, J. K. Chen. Thermal lagging in random media. J. Thermophys. Heat Transf., 12, 567-574(1998).
[18] A. H. Atabaki et al. Optimization of metallic microheaters for high-speed reconfigurable silicon photonics. Opt. Express, 18, 18312-18323(2010).
[19] S. Ma et al. High repetition rates optically active langasite electro-optically Q-switched laser at 1.34 μm. Opt. Express, 25, 24007-24014(2017). https://doi.org/10.1364/OE.25.024007
[20] A. Ellens et al. Spectral-line-broadening study of the trivalent lanthanide-ion series. II. The variation of the electron-phonon coupling strength through the series. Phys. Rev. B, 55, 180-186(1997).
[21] J. Wang et al. Broadband nonlinear optical response of graphene dispersions. Adv. Mater., 21, 2430-2435(2009).
[22] S. Chenais et al. Thermal lensing measurements in diode-pumped Yb-doped GdCOB, YCOB, YSO, YAG and KGW. Opt. Mater., 22, 129-137(2003).
[23] J. M. Serres et al. Q-switching of Yb:YGG, Yb:LuGG and Yb:CNGG lasers by a graphene saturable absorber. Opt. Quantum Electron., 48, 197(2016).
[24] H. Z. Yang, Q. Wang, W. Ji. Laser-pulse-duration and spectral dependence of saturable absorption in graphene. Proc. SPIE, 8205, 82050J(2011).
[25] J. M. Wiesenfeld, L. F. Mollenauer, E. P. Ippen. Ultrafast configurational relaxation of optically excited color centers. Phys. Rev. Lett., 47, 1668-1671(1981).
[26] J. H. Liu et al. Continuous-wave and passive Q-switching laser performance of Yb:YCa4O(BO3)(3) crystal. IEEE J. Sel. Top. Quantum Electron., 21, 348-355(2015). https://doi.org/10.1109/JSTQE.2014.2336534
[27] H. C. Liang et al. Passively Q-switched Yb3+:YCa4O(BO3)(3) laser with InGaAs quantum wells as saturable absorbers. Appl. Opt., 46, 2292-2296(2007). https://doi.org/10.1364/AO.46.002292
[28] X. Chen et al. Acousto-optic Q-switching laser performance of Yb:GdCa4O(BO3)3 crystal. Appl. Opt., 54, 7142-7147(2015). https://doi.org/10.1364/AO.54.007142
[29] X. Chen et al. Compact repetitively Q-switched Yb:YCa4O(BO3)3 laser with an acousto-optic modulator. Opt. Laser Technol., 70, 128-130(2015). https://doi.org/10.1016/j.optlastec.2015.02.002
[30] J. Liu et al. The potential of Yb:YCa4O(BO3)3 crystal in generating high-energy laser pulses. Opt. Express, 21, 9365-9376(2013). https://doi.org/10.1364/OE.21.009365
[31] X. Chen et al. High-power CW and passively Q-switched laser operation of Yb:GdCa4O(BO3)3 crystal. Opt. Laser Technol., 79, 74-78(2016). https://doi.org/10.1016/j.optlastec.2015.11.022
[32] J. Liu et al. Continuous-wave and passive Q-switching laser performance of Yb:YCa4O(BO3)3 crystal. IEEE J. Sel. Top. Quantum Electron., 21, 1600808(2015). https://doi.org/10.1109/JSTQE.2014.2336534
[33] Y. Ma et al. Passive Q-switching induced by few-layer MoTe2 in an Yb:YCOB microchip laser. Opt. Express, 26, 25147-25155(2018). https://doi.org/10.1364/OE.26.025147
[34] K. Tian et al. High-power Yb:YCa4O(BO3)3 laser passively Q-switched by a few-layer WS2 saturable absorber. Opt. Laser Technol., 113, 1-5(2019). https://doi.org/10.1016/j.optlastec.2018.12.001
[35] J. Yang et al. High-power passive Q-switching performance of a Yb:YCa4O(BO3)3 laser with a few-layer Bi2Te3 topological insulator as a saturable absorber. Opt. Mater. Express, 8, 3146-3154(2018). https://doi.org/10.1364/OME.8.003146
[36] X. Chen et al. High-power passively Q-switched Yb:YCa4O(BO3)3 laser with a GaAs crystal plate as saturable absorber. Appl. Opt., 54, 3225-3230(2015). https://doi.org/10.1364/AO.54.003225
[37] J. Liu et al. Passively Q-switched Yb:YCa4O(BO3)3/GaAs laser generating 1 mJ of pulse energy. IEEE Photonics Technol. Lett., 28, 1104-1106(2016). https://doi.org/10.1109/LPT.2016.2531670
[38] A. Yoshida et al. Diode-pumped mode-locked Yb:YCOB laser generating 35 fs pulses. Opt. Lett., 36, 4425-4427(2011).
[39] S. Kimura, S. Tani, Y. Kobayashi. Raman-assisted broadband mode-locked laser. Sci. Rep., 9, 3738(2019).
[40] P. Loiko et al. Multiphonon-assisted emission of rare-earth ions: towards pulse shortening in mode-locked lasers, AM2A.2(2022).
[41] P. Loiko et al. Highly-efficient 2.3 μm thulium lasers based on a high-phonon-energy crystal: evidence of vibronic-assisted emissions. J. Opt. Soc. Am. B, 38, 482-495(2021). https://doi.org/10.1364/JOSAB.411075
微信里点“发现”,扫一下
二维码便可将本文分享至朋友圈。
Set citation alerts for the article
Please enter your email address
CancelConfirm