• Laser & Optoelectronics Progress
  • Vol. 58, Issue 15, 1516001 (2021)
Yixi Zhuang*, Dunrong Chen, and Rongjun Xie**
Author Affiliations
  • College of Materials, State Key Laboratory of Physical Chemistry of Solid Surface, Fujian Provincial Key Laboratory of Materials Genome, Xiamen University, Xiamen , Fujian 361005, China
  • show less
    DOI: 10.3788/LOP202158.1516001 Cite this Article Set citation alerts
    Yixi Zhuang, Dunrong Chen, Rongjun Xie. Persistent Luminescent Materials with Deep Traps for Optical Information Storage[J]. Laser & Optoelectronics Progress, 2021, 58(15): 1516001 Copy Citation Text show less
    References

    [1] Pan Z, Lu Y Y, Liu F. Sunlight-activated long-persistent luminescence in the near-infrared from Cr3+-doped zinc gallogermanates[J]. Nature Materials, 11, 58-63(2011).

    [2] Matsuzawa T, Aoki Y, Takeuchi N et al. A new long phosphorescent phosphor with high brightness, SrAl2O4∶Eu2+,Dy3+[J]. Journal of the Electrochemical Society, 143, 2670-2673(1996).

    [3] Ueda J, Miyano S, Tanabe S. Formation of deep electron traps by Yb3+ codoping leads to super-long persistent luminescence in Ce3+-doped yttrium aluminum gallium garnet phosphors[J]. ACS Applied Materials & Interfaces, 10, 20652-20660(2018).

    [4] le Masne de Chermont Q, Chanéac C, Seguin J et al. Nanoprobes with near-infrared persistent luminescence for in vivo imaging[J]. Proceedings of the National Academy of Sciences, 104, 9266-9271(2007).

    [5] Maldiney T, Bessière A, Seguin J et al. The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells[J]. Nature Materials, 13, 418-426(2014).

    [6] Li Z J, Zhang Y W, Wu X et al. Direct aqueous-phase synthesis of sub-10 nm “luminous pearls” with enhanced in vivo renewable near-infrared persistent luminescence[J]. Journal of the American Chemical Society, 137, 5304-5307(2015).

    [7] Shi J P, Sun X, Zhu J F et al. One-step synthesis of amino-functionalized ultrasmall near infrared-emitting persistent luminescent nanoparticles for in vitro and in vivo bioimaging[J]. Nanoscale, 8, 9798-9804(2016).

    [8] Wang J, Ma Q Q, Hu X X et al. Autofluorescence-free targeted tumor imaging based on luminous nanoparticles with composition-dependent size and persistent luminescence[J]. ACS Nano, 11, 8010-8017(2017).

    [9] Lin X H, Song L, Chen S et al. Kiwifruit-like persistent luminescent nanoparticles with high-performance and in situ activable near-infrared persistent luminescence for long-term in vivo bioimaging[J]. ACS Applied Materials & Interfaces, 9, 41181-41187(2017).

    [10] Zhou Z H, Zheng W, Kong J T et al. Rechargeable and LED-activated ZnGa2O4∶Cr3+ near-infrared persistent luminescence nanoprobes for background-free biodetection[J]. Nanoscale, 9, 6846-6853(2017).

    [11] Wang J, Li J L, Yu J N et al. Large hollow cavity luminous nanoparticles with near-infrared persistent luminescence and tunable sizes for tumor afterglow imaging and chemo-/photodynamic therapies[J]. ACS Nano, 12, 4246-4258(2018).

    [12] Liu J M, Zhang D D, Fang G Z et al. Erythrocyte membrane bioinspired near-infrared persistent luminescence nanocarriers for in vivo long-circulating bioimaging and drug delivery[J]. Biomaterials, 165, 39-47(2018).

    [13] Lü Y, Ding D D, Zhuang Y X et al. Chromium-doped zinc Gallogermanate@Zeolitic imidazolate framework-8: a multifunctional nanoplatform for rechargeable in vivo persistent luminescence imaging and pH-responsive drug release[J]. ACS Applied Materials & Interfaces, 11, 1907-1916(2019).

    [14] Onushkin G A, Lee Y J, Yang J J et al. Efficient alternating current operated white light-emitting diode chip[J]. IEEE Photonics Technology Letters, 21, 33-35(2009).

    [15] Yeh C W, Li Y, Wang J et al. Appropriate green phosphor of SrSi2O2N2∶Eu2+, Mn2+ for AC LEDs[J]. Optics Express, 20, 18031-18043(2012).

    [16] Lin H, Wang B, Xu J et al. Phosphor-in-glass for high-powered remote-type white AC-LED[J]. ACS Applied Materials & Interfaces, 6, 21264-21269(2014).

    [17] Lin H, Xu J, Huang Q M et al. Bandgap tailoring via Si doping in inverse-garnet Mg3Y2Ge3O12∶Ce3+ persistent phosphor potentially applicable in AC-LED[J]. ACS Applied Materials & Interfaces, 7, 21835-21843(2015).

    [18] Liu Y F, Liu P, Wang L et al. A two-step solid-state reaction to synthesize the yellow persistent Gd3Al2Ga3O12∶Ce3+ phosphor with an enhanced optical performance for AC-LEDs[J]. Chemical Communications, 53, 10636-10639(2017).

    [19] Asami K, Ueda J, Tanabe S. Flicker suppression of AC driven white LED by yellow persistent phosphor of Ce3+-Cr3+ Co-doped garnet[J]. Journal of Science and Technology in Lighting, 41, 89-92(2018).

    [20] Zhuang Y X, Wang L, Lü Y et al. Optical data storage and multicolor emission readout on flexible films using deep-trap persistent luminescence materials[J]. Advanced Functional Materials, 28, 1705769(2018).

    [21] Liu Z C, Zhao L, Chen W B et al. Multiple anti-counterfeiting realized in NaBaScSi2O7 with a single activator of Eu2+[J]. Journal of Materials Chemistry C, 6, 11137-11143(2018).

    [22] Long Z W, Wen Y G, Zhou J H et al. No-interference reading for optical information storage and ultra-multiple anti-counterfeiting applications by designing targeted recombination in charge carrier trapping phosphors[J]. Advanced Optical Materials, 7, 1900006(2019).

    [23] Gantz J, Reinsel D. The digital universe in 2020: databig, bigger digital shadows, and biggest growth in the far east[EB/OL]. http://www.emc.com/leadership/digital-universe/index.htm

    [24] Gu M, Li X P, Cao Y Y. Optical storage arrays: a perspective for future big data storage[J]. Light: Science & Applications, 3, e177(2014).

    [25] Gu M, Zhang Q M, Lamon S. Nanomaterials for optical data storage[J]. Nature Reviews Materials, 1, 16070(2016).

    [26] Heanue J F, Bashaw M C, Hesselink L. Volume holographic storage and retrieval of digital data[J]. Science, 265, 749-752(1994).

    [27] Cumpston B H, Ananthavel S P, Barlow S et al. Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication[J]. Nature, 398, 51-54(1999).

    [28] Kawata S, Kawata Y. Three-dimensional optical data storage using photochromic materials[J]. Chemical Reviews, 100, 1777-1788(2000).

    [29] Huang L L, Chen X Z, Mühlenbernd H et al. Three-dimensional optical holography using a plasmonic metasurface[J]. Nature Communications, 4, 2808(2013).

    [30] Zhang C, Zhou H P, Liao L Y et al. Luminescence modulation of ordered upconversion nanopatterns by a photochromic diarylethene: rewritable optical storage with nondestructive readout[J]. Advanced Materials, 22, 633-637(2010).

    [31] Kallepalli D L, Alshehri A M, Marquez D T et al. Ultra-high density optical data storage in common transparent plastics[J]. Scientific Reports, 6, 26163(2016).

    [32] Wilson O, Wilson G J, Mulvaney P. Laser writing in polarized silver nanorod films[J]. Advanced Materials, 14, 1000-1004(2002).

    [33] Pham H H, Gourevich I, Oh J K et al. A multidye nanostructured material for optical data storage and security data encryption[J]. Advanced Materials, 16, 516-520(2004).

    [34] Hirata S, Lee K S, Watanabe T. Reversible fluorescent on-off recording in a highly transparent polymeric material utilizing fluorescent resonance energy transfer (FRET) induced by heat treatment[J]. Advanced Functional Materials, 18, 2869-2879(2008).

    [35] Genovese D, Aliprandi A, Prasetyanto E A et al. Mechano-and photochromism from bulk to nanoscale: data storage on individual self-assembled ribbons[J]. Advanced Functional Materials, 26, 5271-5278(2016).

    [36] Heydari E, Sperling J R, Neale S L et al. Plasmonic color filters as dual-state nanopixels for high-density microimage encoding[J]. Advanced Functional Materials, 27, 1701866(2017).

    [37] Li X, Chon J W M, Wu S et al. Rewritable polarization-encoded multilayer data storage in 2, 5-dimethyl-4-(p-nitrophenylazo) anisole doped polymer[J]. Optics Letters, 32, 277-279(2007).

    [38] Li X P, Cao Y Y, Gu M. Superresolution-focal-volume induced 30 Tbytes/disk capacity by focusing a radially polarized beam[J]. Optics Letters, 36, 2510-2512(2011).

    [39] Bozinovic N, Yue Y, Ren Y X et al. Terabit-scale orbital angular momentum mode division multiplexing in fibers[J]. Science, 340, 1545-1548(2013).

    [40] Ren H R, Li X P, Zhang Q M et al. On-chip noninterference angular momentum multiplexing of broadband light[J]. Science, 352, 805-809(2016).

    [41] Lu Y Q, Zhao J B, Zhang R et al. Tunable lifetime multiplexing using luminescent nanocrystals[J]. Nature Photonics, 8, 32-36(2014).

    [42] Sun H B, Liu S J, Lin W P et al. Smart responsive phosphorescent materials for data recording and security protection[J]. Nature Communications, 5, 3601(2014).

    [43] Sonoda M, Takano M, Miyahara J et al. Computed radiography utilizing scanning laser stimulated luminescence[J]. Radiology, 148, 833-838(1983).

    [44] Takahashi K, Miyahara J, Shibahara Y. Photostimulated luminescence (PSL) and color centers in BaFX∶Eu2+ (X=Cl,Br,I) phosphors[J]. Journal of the Electrochemical Society, 132, 1492-1494(1985).

    [45] Fan W H, Ye K D, Guang X et al. Application of electron trapping material to optical storage technology[J]. Semiconductor Optoelectronics, 22, 161-165(2001).

    [46] Sun L, Wang Y S, Dong J F et al. Progress in studies of electron trapping optical storage materials[J]. Laser & Infrared, 31, 262-265(2001).

    [47] Tian J, Yin J Q, Wang X F. Studies of rare earth electron trapping optical storage materials[J]. Magnetic Recording Materials, 6, 16-20(2005).

    [48] Liu F, Yan W, Chuang Y J et al. Photostimulated near-infrared persistent luminescence as a new optical read-out from Cr3+-doped LiGa5O8[J]. Scientific Reports, 3, 1554(2013).

    [49] Lin S S, Lin H, Ma C G et al. High-security-level multi-dimensional optical storage medium: nanostructured glass embedded with LiGa5O8∶Mn2+ with photostimulated luminescence[J]. Light: Science & Applications, 9, 22(2020).

    [50] van den Eeckhout K, Smet P F, Poelman D. Persistent luminescence in Eu2+-doped compounds: a review[J]. Materials, 3, 2536-2566(2010).

    [51] van den Eeckhout K, Poelman D, Smet P F. Persistent luminescence in non-Eu2+-doped compounds: a review[J]. Materials, 6, 2789-2818(2013).

    [52] Zhuang Y X, Katayama Y, Ueda J et al. A brief review on red to near-infrared persistent luminescence in transition-metal-activated phosphors[J]. Optical Materials, 36, 1907-1912(2014).

    [53] Smet P F, Botterman J, van den Eeckhout K et al. Persistent luminescence in nitride and oxynitride phosphors: a review[J]. Optical Materials, 36, 1913-1919(2014).

    [54] Li Y, Gecevicius M, Qiu J. Long persistent phosphors: from fundamentals to applications[J]. Chemical Society Reviews, 45, 2090-2136(2016).

    [55] Sun S K, Wang H F, Yan X P. Engineering persistent luminescence nanoparticles for biological applications: from biosensing/bioimaging to theranostics[J]. Accounts of Chemical Research, 51, 1131-1143(2018).

    [56] Fan X T, Liu Z C, Yang X X et al. Recent developments and progress of inorganic photo-stimulated phosphors[J]. Journal of Rare Earths, 37, 679-690(2019).

    [57] Liang L, Chen N, Jia Y Y et al. Recent progress in engineering near-infrared persistent luminescence nanoprobes for time-resolved biosensing/bioimaging[J]. Nano Research, 12, 1279-1292(2019).

    [58] Tan H X, Wang T Y, Shao Y R et al. Crucial breakthrough of functional persistent luminescence materials for biomedical and information technological applications[J]. Frontiers in Chemistry, 7, 387(2019).

    [59] Poelman D, van der Heggen D, Du J R et al. Persistent phosphors for the future: fit for the right application[J]. Journal of Applied Physics, 128, 240903(2020).

    [60] Yuan L F, Jin Y H, Su Y et al. Optically stimulated luminescence materials: optically stimulated luminescence phosphors: principles, applications, and prospects[J]. Laser & Photonics Reviews, 14, 2070068(2020).

    [61] Yang Q T, Abdurahman R, Yan Y et al. Brief introduction of Cr3+-doped persistent luminescence nanoparticles in biomedical applied research[J]. Laser & Optoelectronics Progress, 58, 0800003(2021).

    [62] Katayama Y, Ueda J, Tanabe S. Photo-electronic properties and persistent luminescence in Pr3+ doped (Ca, Sr)TiO3 ceramics[J]. Journal of Luminescence, 148, 290-295(2014).

    [63] Zhuang Y X, Ueda J, Tanabe S. Tunable trap depth in Zn(Ga1-xAlx)2O4∶Cr, Bi red persistent phosphors: considerations of high-temperature persistent luminescence and photostimulated persistent luminescence[J]. Journal of Materials Chemistry C, 1, 7849-7855(2013).

    [64] Hoogenstraaten W. Electron traps in zinc-sulphide phosphors[J]. Philips Research Reports, 515-520(1958).

    [65] Wang Y H, Wang L. Defect states in Nd3+-doped CaAl2O4∶Eu2+[J]. Journal of Applied Physics, 101, 053108(2007).

    [66] van den Eeckhout K, Bos A J J, Poelman D et al. Revealing trap depth distributions in persistent phosphors[J]. Physical Review B, 87, 045126(2013).

    [67] Chen W, Kristianpoller N, Shmilevich A et al. X-ray storage luminescence of BaFCl∶Eu2+ single crystals[J]. The Journal of Physical Chemistry B, 109, 11505-11511(2005).

    [68] Meng X G, Wang Y S, Jin H et al. A new promising X-ray storage phosphor BaBrCl∶Eu2+[J]. Journal of Rare Earths, 24, 503-505(2006).

    [69] Riesen H, Kaczmarek W A. Efficient X-ray generation of Sm2+ in nanocrystalline BaFCl/Sm3+∶ a photoluminescent X-ray storage phosphor[J]. Inorganic Chemistry, 46, 7235-7237(2007).

    [70] Liu Z Q, Stevens-Kalceff M, Riesen H. Photoluminescence and cathodoluminescence properties of nanocrystalline BaFCl∶Sm3+ X-ray storage phosphor[J]. The Journal of Physical Chemistry C, 116, 8322-8331(2012).

    [71] Wang X L, Liu Z Q, Stevens-Kalceff M A et al. Mechanochemical preparation of nanocrystalline BaFCl doped with samarium in the 2+ oxidation state[J]. Inorganic Chemistry, 53, 8839-8841(2014).

    [72] Riesen N, Pan X Z, Badek K et al. Towards rewritable multilevel optical data storage in single nanocrystals[J]. Optics Express, 26, 12266-12276(2018).

    [73] Riesen H, Badek K, Monro T M et al. Highly efficient valence state switching of samarium in BaFCl∶Sm nanocrystals in the deep UV for multilevel optical data storage[J]. Optical Materials Express, 6, 3097-3108(2016).

    [74] Rogulis U, Tale I, Hangleiter T et al. The photostimulation process in the X-ray storage phosphor KBr∶In[J]. Journal of Physics: Condensed Matter, 7, 3129-3137(1995).

    [75] Rogulis U, Schweizer S, Assmann S et al. Ga2+ hole centers and photostimulated luminescence in the X-ray storage phosphor RbBr∶Ga+[J]. Journal of Applied Physics, 84, 4537-4542(1998).

    [76] Rogulis U, Schweizer S, Assmann S et al. Photostimulated luminescence process in the X-ray storage phosphor CsBr∶Ga+[J]. Journal of Applied Physics, 87, 207-211(2000).

    [77] Pawlik T, Spaeth J M. Investigation of the X-ray storage phosphors Cs2NaYF6∶Pr3+ or Ce3+[J]. Journal of Applied Physics, 82, 4236-4240(1997).

    [78] Pawlik T, Spaeth J M, Otte M et al. Endor-investigations of rare earth and transition metal ions in the cubic elpasolite crystal Cs2NaYF6[J]. Radiation Effects and Defects in Solids, 135, 49-54(1995).

    [79] Ou X Y, Qin X, Huang B L et al. High-resolution X-ray luminescence extension imaging[J]. Nature, 590, 410-415(2021).

    [80] Zhuang Y X, Chen D R, Chen W J et al. X-ray-charged bright persistent luminescence in NaYF4∶Ln3+@NaYF4 nanoparticles for multidimensional optical information storage[J]. Light: Science & Applications, 10, 132(2021).

    [81] Wang Y K, Chen D R, Zhuang Y X et al. NaMgF3: Tb3+@NaMgF3 nanoparticles containing deep traps for optical information storage[J]. Advanced Optical Materials, 2100624(2021).

    [82] Meijerink A, Blasse G. Photostimulated luminescence and thermally stimulated luminescence of some new X-ray storage phosphors[J]. Journal of Physics D: Applied Physics, 24, 626-632(1991).

    [83] Tamura Y, Shibukawa A. Optical studies of CaS: Eu, Sm infrared stimulable phosphors[J]. Japanese Journal of Applied Physics, 32, 3187-3196(1993).

    [84] He Z Y, Wang Y S, Sun L et al. Optical absorption studies on the trapping states of CaS∶Eu, Sm[J]. Journal of Physics: Condensed Matter, 13, 3665-3675(2001).

    [85] Wu J P, Newman D, Viney I V F. Study on relationship of luminescence in CaS∶Eu, Sm and dopants concentration[J]. Journal of Luminescence, 99, 237-245(2002).

    [86] Weidner M, Osvet A, Schierning G et al. Influence of dopant compounds on the storage mechanism of CaS∶Eu2+, Sm3+[J]. Journal of Applied Physics, 100, 073701(2006).

    [87] Robins L H, Tuchman J A. Photoluminescence studies of Sm2+ in the stimulable phosphor SrS∶Eu, Sm[J]. Physical Review B, 57, 12094-12103(1998).

    [88] Nanto H, Sato T, Miyazaki M et al. Advanced optical storage phosphor materials for erasable and rewritable optical memory utilizing photostimulated luminescence[J]. Proceedings of SPIE, 3802, 258-265(1999).

    [89] Zych E, Trojan-Piegza J, Hreniak D et al. Properties of Tb-doped vacuum-sintered Lu2O3 storage phosphor[J]. Journal of Applied Physics, 94, 1318-1324(2003).

    [90] Wiatrowska A, Zych E. Traps formation and characterization in long-term energy storing Lu2O3∶Pr, Hf luminescent ceramics[J]. The Journal of Physical Chemistry C, 117, 11449-11458(2013).

    [91] Akselrod M S, Kortov V S, Kravetsky D J et al. Highly sensitive thermoluminescent anion-defective alpha-Al2O3∶C single crystal detectors[J]. Radiation Protection Dosimetry, 32, 15-20(1990).

    [92] Yukihara E G, Whitley V H, Polf J C et al. The effects of deep trap population on the thermoluminescence of Al2O3∶C[J]. Radiation Measurements, 37, 627-638(2003).

    [93] Bos A J J, Prokić M, Brouwer J C. Optically and thermally stimulated luminescence characteristics of MgO∶Tb3+[J]. Radiation Protection Dosimetry, 119, 130-133(2006).

    [94] Carvalho J M, Rodrigues L C V, Hölsä J et al. Influence of titanium and lutetium on the persistent luminescence of ZrO2[J]. Optical Materials Express, 2, 331-340(2012).

    [95] Ohashi M, Takahashi Y, Terakado N et al. Temperature dependence of afterglow in zirconia and its optically-stimulated luminescence by bone-through irradiation for biological temperature probe[J]. Scientific Reports, 10, 2242(2020).

    [96] Wang C L, Jin Y H, Lü Y et al. Trap distribution tailoring guided design of super-long-persistent phosphor Ba2SiO4∶Eu2+, Ho3+ and photostimulable luminescence for optical information storage[J]. Journal of Materials Chemistry C, 6, 6058-6067(2018).

    [97] Liu D, Yuan L F, Jin Y H et al. Tailoring multidimensional traps for rewritable multilevel optical data storage[J]. ACS Applied Materials & Interfaces, 11, 35023-35029(2019).

    [98] Lin S S, Lin H, Huang Q M et al. A photostimulated BaSi2O5∶Eu2+, Nd3+ phosphor-in-glass for erasable-rewritable optical storage medium[J]. Laser & Photonics Reviews, 13, 1900006(2019).

    [99] Sun X Y, Zhang J H, Zhang X et al. Long lasting yellow phosphorescence and photostimulated luminescence in Sr3SiO5∶Eu2+ and Sr3SiO5∶Eu2+, Dy3+ phosphors[J]. Journal of Physics D: Applied Physics, 41, 195414(2008).

    [100] Zhang B H, Yu X, Wang T et al. Photostimulated and long persistent luminescence properties from different crystallographic sites of β-Sr2SiO4∶Eu2+, R3+ (R=Tm, Gd)[J]. Journal of the American Ceramic Society, 98, 171-177(2015).

    [101] Knitel M J, Dorenbos P, van Eijk C W E. Photostimulated luminescence and thermoluminescence properties of LiYSiO4∶Ce[J]. Journal of Luminescence, 72/73/74, 765-766(1997).

    [102] Dobrowolska A, Bos A J J, Dorenbos P. Synthesis optimization and charge carrier transfer mechanism in LiLuSiO4:Ce, Tm storage phosphor[J]. Radiation Measurements, 127, 106147(2019).

    [103] Wang W X, Yang J X, Zou Z H et al. An isolated deep-trap phosphor for optical data storage[J]. Ceramics International, 44, 10010-10014(2018).

    [104] Katayama Y, Kayumi T, Ueda J et al. The role of Ln3+ (Ln= Eu, Yb) in persistent red luminescence in MgGeO3∶Mn2+[J]. Journal of Materials Chemistry C, 5, 8893-8900(2017).

    [105] Tian S Y, Liu B T, Zhao L et al. Red photo-stimulated luminescence from deep traps of BaZrGe3O9∶Pr3+ for optical imaging application[J]. Journal of Alloys and Compounds, 800, 224-230(2019).

    [106] Zou Z H, Tang X, Wu C et al. How to tune trap properties of persistent phosphor: photostimulated persistent luminescence of NaLuGeO4∶Bi3+, Cr3+ tailored by trap engineering[J]. Materials Research Bulletin, 97, 251-259(2018).

    [107] Zhang Y, Chen D X, Wang W L et al. Long-lasting ultraviolet-A persistent luminescence and photostimulated persistent luminescence in Bi3+-doped LiScGeO4 phosphor[J]. Inorganic Chemistry Frontiers, 7, 3063-3071(2020).

    [108] Zhang J C, Yu M H, Qin Q S et al. The persistent luminescence and up conversion photostimulated luminescence properties of nondoped Mg2SnO4 material[J]. Journal of Applied Physics, 108, 123518(2010).

    [109] Xu X H, He Q L, Yan L T. White-light long persistent and photo-stimulated luminescence in CaSnSiO5∶Dy3+[J]. Journal of Alloys and Compounds, 574, 22-26(2013).

    [110] Xu X H, Yan L T, Yu X et al. Concentration-dependent effects of optical storage properties in CSSO: Dy[J]. Materials Letters, 99, 158-160(2013).

    [111] Wang C Y, Zheng Z H, Zhang Y et al. Modulating trap properties by Nd3+-Eu3+ co-doping in Sr2SnO4 host for optical information storage[J]. Optics Express, 28, 4249-4257(2020).

    [112] Zhang Y, Huang R, Lin Z X et al. Co-dopant influence on near-infrared luminescence properties of Zn2SnO4∶Cr3+, Eu3+ ceramic discs[J]. Journal of Alloys and Compounds, 686, 407-412(2016).

    [113] Li J L, Shi J P, Wang C C et al. Five-nanometer ZnSn2O4∶Cr, Eu ultra-small nanoparticles as new near infrared-emitting persistent luminescent nanoprobes for cellular and deep tissue imaging at 800 nm[J]. Nanoscale, 9, 8631-8638(2017).

    [114] Yan X L, Liu Y X, Yan D T et al. The effects of Mn2+ doping on the luminescence properties of 12CaO·7Al2O3∶Eu2+ nanocrystal phosphor[J]. Journal of Nanoscience and Nanotechnology, 11, 9964-9969(2011).

    [115] Li S N, Liu Y X, Liu C G et al. Improvement of X-ray storage properties of C12A7∶Tb3+ photo-stimulable phosphors through controlling encaged anions[J]. Journal of Alloys and Compounds, 696, 828-835(2017).

    [116] Zhuang Y X, Ueda J, Tanabe S et al. Band-gap variation and a self-redox effect induced by compositional deviation in ZnxGa2O3+x∶Cr3+ persistent phosphors[J]. Journal of Materials Chemistry C, 2, 5502-5509(2014).

    [117] Ueda J, Kuroishi K, Tanabe S. Bright persistent ceramic phosphors of Ce3+-Cr3+-codoped garnet able to store by blue light[J]. Applied Physics Letters, 104, 101904(2014).

    [118] Ueda J, Dorenbos P, Bos A J J et al. Control of electron transfer between Ce3+ and Cr3+ in the Y3Al5-xGaxO12 host via conduction band engineering[J]. Journal of Materials Chemistry C, 3, 5642-5651(2015).

    [119] Li W H, Zhuang Y X, Zheng P et al. Tailoring trap depth and emission wavelength in Y3Al5-xGaxO12∶ Ce3+, V3+ phosphor-in-glass films for optical information storage[J]. ACS Applied Materials & Interfaces, 10, 27150-27159(2018).

    [120] Xu J, Ueda J, Zhuang Y X et al. Y3Al5-xGaxO12∶ Cr3+: a novel red persistent phosphor with high brightness[J]. Applied Physics Express, 8, 042602(2015).

    [121] Xu J, Ueda J, Tanabe S. Design of deep-red persistent phosphors of Gd3Al5-xGaxO12∶Cr3+ transparent ceramics sensitized by Eu3+ as an electron trap using conduction band engineering[J]. Optical Materials Express, 5, 963-968(2015).

    [122] Wang B, Li X S, Chen Y Q et al. Long persistent and photo-stimulated luminescence in Pr3+ -doped layered perovskite phosphor for optical data storage[J]. Journal of the American Ceramic Society, 101, 4598-4607(2018).

    [123] Liu X, Zhang J C, Ma X L et al. Violet-blue up conversion photostimulated luminescence properties and first principles calculations of a novel un-doped CaZrO3 phosphor for application in optical storage[J]. Journal of Alloys and Compounds, 550, 451-458(2013).

    [124] Qiu J R, Miura K, Inouye H et al. Femtosecond laser-induced three-dimensional bright and long-lasting phosphorescence inside calcium aluminosilicate glasses doped with rare earth ions[J]. Applied Physics Letters, 73, 1763-1765(1998).

    [125] Li C Y, Yu Y N, Wang S B et al. Photo-stimulated long-lasting phosphorescence in Mn2+-doped zinc borosilicate glasses[J]. Journal of Non-Crystalline Solids, 321, 191-196(2003).

    [126] Li C Y, Wang J, Liang H B et al. Near infrared long lasting emission of Yb3+ and its influence on the optical storage ability of Mn2+-activated zinc borosilicate glasses[J]. Journal of Applied Physics, 101, 113304(2007).

    [127] Wang J, Zhang H R, Lei B F et al. Enhanced photoluminescence and phosphorescence properties of red CaAlSiN3∶Eu2+ phosphor via simultaneous UV-NIR stimulation[J]. Journal of Materials Chemistry C, 3, 4445-4451(2015).

    [128] Wang J, Zhang H R, Lei B F et al. Red persistent and photo-stimulated luminescence properties of SrCaSi5N8∶Eu2+, Tm3+ solid solution[J]. Optical Materials, 36, 1855-1858(2014).

    [129] Wang J, Zhang H R, Lei B F et al. Optical energy storage properties of (Ca1-x Srx)2Si5N8∶Eu2+, Tm3+ solid solutions[J]. Journal of the American Ceramic Society, 98, 1823-1828(2015).

    [130] Zhang S Y, Song Z, Wang S X et al. Red persistent and photostimulable phosphor SrLiAl3N4∶Eu2+[J]. Journal of Materials Chemistry C, 8, 4956-4964(2020).

    [131] Wang F X, Guo J Z, Wang S X et al. Yellow persistent luminescence and electronic structure of Ca-α-Sialon∶Eu2+[J]. Journal of Alloys and Compounds, 821, 153482(2020).

    [132] Zhuang Y X, Lü Y, Wang L et al. Trap depth engineering of SrSi2O2N2∶Ln2+, Ln3+ (Ln2+ = Yb, Eu; Ln3+= Dy, Ho, Er) persistent luminescence materials for information storage applications[J]. ACS Applied Materials & Interfaces, 10, 1854-1864(2018).

    [133] Takahashi K. Progress in science and technology on photostimulable BaFX∶Eu2+ (X=Cl, Br, I) and imaging plates[J]. Journal of Luminescence, 100, 307-315(2002).

    [134] Chen W, Song J Q, Su M Z. Progresses of investigation on X-ray storage phorsphors of MFX: Eu2+ and prospecting of their applications[J]. Journal of Functional Materials, 25, 197-204(1994).

    [135] Chen W, Su M Z. Some new observation on the process of the photostimulated luminescence(psl) of X-irradiated BaFCl∶Eu2+[J]. Journal of Inorganic Chemistry, 10, 165-171(1994).

    [136] Wang Z J, Xiong G N, Teng F et al. Studying of X-ray storage process in BaFCl∶Eu2+[J]. Chinese Journal of Luminescence, 16, 20-26(1995).

    [137] Schweizer S. Physics and current understanding of X-ray storage phosphors[J]. Physica Status Solidi (a), 187, 335-393(2001).

    [138] Ahlers F J, Lohse F, Hangleiter T et al. Optical properties of atomic gallium and indium centres in KCl[J]. Journal of Physics C: Solid State Physics, 17, 4877-4888(1984).

    [139] Jutamulia S, Storti G M, Lindmayer J et al. Use of electron-trapping materials in optical signal processing. 1 parallel boolean logic[J]. Applied Optics, 29, 4806-4811(1990).

    [140] Vrubel I I, Polozkov R G, Shelykh I A et al. Bandgap engineering in yttrium-aluminum garnet with Ga doping[J]. Crystal Growth & Design, 17, 1863-1869(2017).

    [141] Xu J, Chen Z Y, Gai M Q et al. Optically stimulated luminescence of Dy3+-doped NaCaPO4 glass-ceramics[J]. Journal of Rare Earths, 38, 927-932(2020).

    [142] Okada G, Shinozaki K, Komatsu T et al. Tb3+-doped BaF2-Al2O3-B2O3 glass and glass-ceramic for radiation measurements[J]. Journal of Non-Crystalline Solids, 501, 111-115(2018).

    [143] Xu J, Chen Z Y, Gai M Q et al. Fabrication and OSL properties of Eu3+-doped NaCaPO4 glass-ceramics[J]. Materials Letters, 261, 126973(2020).

    [144] Bos A J J, Dorenbos P, Bessière A et al. Study of TL glow curves of YPO4 double doped with lanthanide ions[J]. Radiation Measurements, 46, 1410-1416(2011).

    [145] Zhuang Y X, Lü Y, Li Y et al. Study on trap levels in SrSi2AlO2N3∶Eu2+, Ln3+ persistent phosphors based on host-referred binding energy scheme and thermoluminescence analysis[J]. Inorganic Chemistry, 55, 11890-11897(2016).

    [146] Dorenbos P. Lanthanide 4f-electron binding energies and the nephelauxetic effect in wide band gap compounds[J]. Journal of Luminescence, 136, 122-129(2013).

    [147] Zhuang Y, Tu D, Chen C et al. Force-induced charge carrier storage: a new route for stress recording[J]. Light, Science & Applications, 9, 182(2020).

    Yixi Zhuang, Dunrong Chen, Rongjun Xie. Persistent Luminescent Materials with Deep Traps for Optical Information Storage[J]. Laser & Optoelectronics Progress, 2021, 58(15): 1516001
    Download Citation