• Photonics Research
  • Vol. 12, Issue 2, 194 (2024)
Jiaming Lyu1, Lihao Huang1, Lin Chen1、2、*, Yiming Zhu1、3, and Songlin Zhuang1
Author Affiliations
  • 1THz Technology Innovation Research Institute, Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, China
  • 2Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai 200092, China
  • 3e-mail: ymzhu@usst.edu.cn
  • show less
    DOI: 10.1364/PRJ.508136 Cite this Article Set citation alerts
    Jiaming Lyu, Lihao Huang, Lin Chen, Yiming Zhu, Songlin Zhuang. Review on the terahertz metasensor: from featureless refractive index sensing to molecular identification[J]. Photonics Research, 2024, 12(2): 194 Copy Citation Text show less
    References

    [1] B. Ferguson, X.-C. Zhang. Materials for terahertz science and technology. Nat. Mater, 1, 26-33(2002).

    [2] J. B. Baxter, G. W. Guglietta. Terahertz spectroscopy. Anal. Chem., 83, 4342-4368(2011).

    [3] C. Jördens. Detection of foreign bodies in chocolate with pulsed terahertz spectroscopy. Opt. Eng., 47, 037003(2008).

    [4] C. Wang, R. Zhou, Y. Huang. Terahertz spectroscopic imaging with discriminant analysis for detecting foreign materials among sausages. Food Control, 97, 100-104(2019).

    [5] C. Kulesa. Terahertz spectroscopy for astronomy: from comets to cosmology. IEEE Trans. Terahertz Sci. Technol., 1, 232-240(2011).

    [6] H.-J. Song, N. Lee. Terahertz communications: challenges in the next decade. IEEE Trans. Terahertz Sci. Technol., 12, 105-117(2022).

    [7] Y. Lu, X.-K. Wang, W.-F. Sun. Reflective single-pixel terahertz imaging based on compressed sensing. IEEE Trans. Terahertz Sci. Technol., 10, 495-501(2020).

    [8] M. Kemp, P. Taday, B. Cole. Security applications of terahertz technology. Proc. SPIE, 5070, 44-52(2003).

    [9] H. Tian, G. Huang, F. Xie. THz biosensing applications for clinical laboratories: bottlenecks and strategies. TrAC Trends Anal. Chem., 163, 117057(2023).

    [10] J. Neu, C. A. Schmuttenmaer. Tutorial: an introduction to terahertz time domain spectroscopy (THz-TDS). J. Appl. Phys., 124, 231101(2018).

    [11] I. Maeng, S. H. Baek, H. Y. Kim. Feasibility of using terahertz spectroscopy to detect seven different pesticides in wheat flour. J. Food Prot., 77, 2081-2087(2014).

    [12] J. Qin, L. Xie, Y. Ying. Feasibility of terahertz time-domain spectroscopy to detect tetracyclines hydrochloride in infant milk powder. Anal. Chem., 86, 11750-11757(2014).

    [13] W. Liu, P. Zhao, C. Wu. Rapid determination of aflatoxin B1 concentration in soybean oil using terahertz spectroscopy with chemometric methods. Food Chem., 293, 213-219(2019).

    [14] T. M. Korter, R. Balu, M. B. Campbell. Terahertz spectroscopy of solid serine and cysteine. Chem. Phys. Lett., 418, 65-70(2006).

    [15] F. S. Vieira, C. Pasquini. Determination of cellulose crystallinity by terahertz-time domain spectroscopy. Anal. Chem., 86, 3780-3786(2014).

    [16] L. Xie, C. Wang, M. Chen. Temperature-dependent terahertz vibrational spectra of tetracycline and its degradation products. Spectrochim. Acta A, 222, 117179(2019).

    [17] U. Leonhardt. Optical conformal mapping. Science, 312, 1777-1780(2006).

    [18] D. R. Smith, J. B. Pendry, M. C. K. Wiltshire. Metamaterials and negative refractive index. Science, 305, 788-792(2004).

    [19] G. Dolling, C. Enkrich, M. Wegener. Low-loss negative-index metamaterial at telecommunication wavelengths. Opt. Lett., 31, 1800-1802(2006).

    [20] J. Zhou, L. Zhang, G. Tuttle. Negative index materials using simple short wire pairs. Phys. Rev. B, 73, 041101(2006).

    [21] N. K. Grady, J. E. Heyes, D. R. Chowdhury. Terahertz metamaterials for linear polarization conversion and anomalous refraction. Science, 340, 1304-1307(2013).

    [22] Z. Song, L. Zhang, Q. H. Liu. High-efficiency broadband cross polarization converter for near-infrared light based on anisotropic plasmonic meta-surfaces. Plasmonics, 11, 61-64(2016).

    [23] J. B. Pendry, A. J. Holden, D. J. Robbins. Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans. Microw. Theory Tech., 47, 2075-2084(1999).

    [24] J. Hao, J. Wang, X. Liu. High performance optical absorber based on a plasmonic metamaterial. Appl. Phys. Lett., 96, 251104(2010).

    [25] K. Aydin, V. E. Ferry, R. M. Briggs. Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers. Nat. Commun., 2, 517(2011).

    [26] Z. Song, Z. Wang, M. Wei. Broadband tunable absorber for terahertz waves based on isotropic silicon metasurfaces. Mater. Lett., 234, 138-141(2019).

    [27] S. Zhang, D. A. Genov, Y. Wang. Plasmon-induced transparency in metamaterials. Phys. Rev. Lett., 101, 047401(2008).

    [28] Y. Yang, I. I. Kravchenko, D. P. Briggs. All-dielectric metasurface analogue of electromagnetically induced transparency. Nat. Commun., 5, 5753(2014).

    [29] Z. Song, Q. Chu, Q. H. Liu. Isotropic wide-angle analog of electromagnetically induced transparency in a terahertz metasurface. Mater. Lett., 223, 90-92(2018).

    [30] S. B. Glybovski, S. A. Tretyakov, P. A. Belov. Metasurfaces: from microwaves to visible. Phys. Rep., 634, 1-72(2016).

    [31] J. B. Pendry. Negative refraction makes a perfect lens. Phys. Rev. Lett., 85, 3966-3969(2000).

    [32] A. E. Minovich, A. E. Miroshnichenko, A. Y. Bykov. Functional and nonlinear optical metasurfaces. Laser Photon. Rev., 9, 195-213(2015).

    [33] X. Zang, B. Yao, L. Chen. Metasurfaces for manipulating terahertz waves. Light Adv. Manuf., 2, 148(2021).

    [34] Y. Zhu, X. Zang, H. Chi. Metasurfaces designed by a bidirectional deep neural network and iterative algorithm for generating quantitative field distributions. Light Adv. Manuf., 4, 104-114(2023).

    [35] P. Sun, Y. Zou. Complex dielectric properties of anhydrous polycrystalline glucose in the terahertz region. Opt. Quantum Electron., 48, 27(2016).

    [36] A. G. Markelz, D. M. Mittleman. Perspective on terahertz applications in bioscience and biotechnology. ACS Photon., 9, 1117-1126(2022).

    [37] A. Keshavarz, Z. Vafapour. Sensing avian influenza viruses using terahertz metamaterial reflector. IEEE Sens. J., 19, 5161-5166(2019).

    [38] H. Wang, F. Zheng, Y. Xu. Recent progress in terahertz biosensors based on artificial electromagnetic subwavelength structure. TRAC Trends Anal. Chem., 158, 116888(2023).

    [39] S. Shen, X. Liu, Y. Shen. Recent advances in the development of materials for terahertz metamaterial sensing. Adv. Opt. Mater., 10, 2101008(2022).

    [40] W. Xu, L. Xie, Y. Ying. Mechanisms and applications of terahertz metamaterial sensing: a review. Nanoscale, 9, 13864-13878(2017).

    [41] M. Beruete, I. Jáuregui-López. Terahertz sensing based on metasurfaces. Adv. Opt. Mater., 8, 1900721(2020).

    [42] M. Seo, H. Park. Terahertz biochemical molecule-specific sensors. Adv. Opt. Mater., 8, 1900662(2020).

    [43] A. Ahmadivand, B. Gerislioglu, R. Ahuja. Terahertz plasmonics: the rise of toroidal metadevices towards immunobiosensings. Mater. Today, 32, 108-130(2020).

    [44] J. Lyu, S. Shen, L. Chen. Frequency selective fingerprint sensor: the terahertz unity platform for broadband chiral enantiomers multiplexed signals and narrowband molecular AIT enhancement. PhotoniX, 4, 28(2023).

    [45] G. Guarin, M. Hofmann, J. Nehring. Miniature microwave biosensors: noninvasive applications. IEEE Microw., 16, 71-86(2015).

    [46] F. Lan, F. Luo, P. Mazumder. Dual-band refractometric terahertz biosensing with intense wave-matter-overlap microfluidic channel. Biomed. Opt. Express, 10, 3789-3799(2019).

    [47] X. Zhang, X. Wu, B. Xiao. Terahertz determination of imidacloprid in soil based on a metasurface sensor. Opt. Express, 31, 37778-37788(2023).

    [48] Z.-Y. Li, D.-X. Xu, W. R. McKinnon. Silicon waveguide modulator based on carrier depletion in periodically interleaved PN junctions. Opt. Express, 17, 15947-15958(2009).

    [49] Z. Yu, S. Fan. Extraordinarily high spectral sensitivity in refractive index sensors using multiple optical modes. Opt. Express, 19, 10029-10040(2011).

    [50] A. Salim, S. Lim. Review of recent metamaterial microfluidic sensors. Sensors, 18, 232(2018).

    [51] L. Huang, H. Cao, L. Chen. Terahertz reconfigurable metasensor for specific recognition multiple and mixed chemical substances based on AIT fingerprint enhancement. Talanta, 269, 125481(2024).

    [52] T. Lang, Z. Yu, J. Zhang. Bovine serum albumin detection based on electromagnetically induced transparency in terahertz metamaterial. Sens. Actuators A, 360, 114522(2023).

    [53] Y. Yang, F. Chai, X. Huang. Terahertz wave biomolecular sensor based on all-dielectric high Q metasurface. Opt. Laser Technol., 169, 110106(2024).

    [54] K. W. Kim, J. Song, J. S. Kee. Label-free biosensor based on an electrical tracing-assisted silicon microring resonator with a low-cost broadband source. Biosens. Bioelectron., 46, 15-21(2013).

    [55] A. B. Djurišić, E. H. Li. Modeling the index of refraction of insulating solids with a modified Lorentz oscillator model. Appl. Opt., 37, 5291-5297(1998).

    [56] R. Sengupta, H. Khand, G. Sarusi. Terahertz impedance spectroscopy of biological nanoparticles by a resonant metamaterial chip for breathalyzer-based COVID-19 prompt tests. ACS Appl. Nano Mater., 5, 5803-5812(2022).

    [57] Y. Yang, D. Xu, W. Zhang. High-sensitivity and label-free identification of a transgenic genome using a terahertz meta-biosensor. Opt. Express, 26, 31589-31598(2018).

    [58] J. Zhou, L. Chen, Q. Sun. Terahertz on-chip sensing by exciting higher radial order spoof localized surface plasmons. Appl. Phys. Express, 13, 012014(2020).

    [59] L. Chen, Y. Wei, X. Zang. Excitation of dark multipolar plasmonic resonances at terahertz frequencies. Sci. Rep., 6, 22027(2016).

    [60] L. Chen, N. Xu, L. Singh. Defect-induced Fano resonances in corrugated plasmonic metamaterials. Adv. Opt. Mater., 5, 1600960(2017).

    [61] L. Chen, D. Liao, X. Guo. Terahertz time-domain spectroscopy and micro-cavity components for probing samples: a review. Front. Inf. Technol. Electron. Eng., 20, 591-607(2019).

    [62] L. Chen, Y. Zhu, X. Zang. Mode splitting transmission effect of surface wave excitation through a metal hole array. Light Sci. Appl., 2, e60(2013).

    [63] T. C. W. Tan, E. Plum, R. Singh. Lattice-enhanced Fano resonances from bound states in the continuum metasurfaces. Adv. Opt. Mater., 8, 1901572(2020).

    [64] J. Xu, D. Liao, M. Gupta. Terahertz microfluidic sensing with dual-torus toroidal metasurfaces. Adv. Opt. Mater., 9, 2100024(2021).

    [65] C. Zhang, T. Xue, J. Zhang. Terahertz toroidal metasurface biosensor for sensitive distinction of lung cancer cells. Nanophotonics, 11, 101-109(2021).

    [66] C. Zhang, T. Xue, J. Zhang. Terahertz meta-biosensor based on high-Q electrical resonance enhanced by the interference of toroidal dipole. Biosens. Bioelectron., 214, 114493(2022).

    [67] X. Yan, M. Yang, Z. Zhang. The terahertz electromagnetically induced transparency-like metamaterials for sensitive biosensors in the detection of cancer cells. Biosens. Bioelectron., 126, 485-492(2019).

    [68] R. Singh, W. Cao, I. Al-Naib. Ultrasensitive terahertz sensing with high-Q Fano resonances in metasurfaces. Appl. Phys. Lett., 105, 171101(2014).

    [69] F. Taleb, I. Al-Naib, M. Koch. Free-standing complementary asymmetric metasurface for terahertz sensing applications. Sensors, 20, 2265(2020).

    [70] X. Li, J. Yin, J. Liu. Resonant transparency of a planar anapole metamaterial at terahertz frequencies. Photon. Res., 9, 125-130(2021).

    [71] W. Wang, Y. K. Srivastava, M. Gupta. Photoswitchable anapole metasurfaces. Adv. Opt. Mater., 10, 2102284(2022).

    [72] T. C. Tan, Y. K. Srivastava, R. T. Ako. Active control of nanodielectric-induced THz quasi-BIC in flexible metasurfaces: a platform for modulation and sensing. Adv. Mater., 33, 2100836(2021).

    [73] R. Wang, L. Xu, L. Huang. Ultrasensitive terahertz biodetection enabled by quasi-BIC-based metasensors. Small, 19, 2301165(2023).

    [74] B. Jin, W. Tan, C. Zhang. High-performance terahertz sensing at exceptional points in a bilayer structure. Adv. Theor. Simul., 1, 1800070(2018).

    [75] P. Nie, D. Zhu, Z. Cui. Sensitive detection of chlorpyrifos pesticide using an all-dielectric broadband terahertz metamaterial absorber. Sens. Actuators B, 307, 127642(2020).

    [76] Y. Wang, D. Zhu, Z. Cui. Properties and sensing performance of all-dielectric metasurface THz absorbers. IEEE Trans. Terahertz Sci. Technol., 10, 599-605(2020).

    [77] Y. Wang, D. Zhu, Z. Cui. All-dielectric terahertz plasmonic metamaterial absorbers and high-sensitivity sensing. ACS Omega, 4, 18645-18652(2019).

    [78] Y. Wang, Z. Cui, D. Zhu. Multiband terahertz absorber and selective sensing performance. Opt. Express, 27, 14133-14143(2019).

    [79] X. Hu, G. Xu, L. Wen. Metamaterial absorber integrated microfluidic terahertz sensors. Laser Photon. Rev., 10, 962-969(2016).

    [80] M. Gupta, R. Singh. Terahertz sensing with optimized Q/Veff metasurface cavities. Adv. Opt. Mater., 8, 1902025(2020).

    [81] A. Kumar, M. Gupta, P. Pitchappa. Topological sensor on a silicon chip. Appl. Phys. Lett., 121, 011101(2022).

    [82] W. Xu, L. Xie, J. Zhu. Terahertz sensing of chlorpyrifos-methyl using metamaterials. Food Chem., 218, 330-334(2017).

    [83] C. Wang, X. Li, Y. Huang. Metallic mesh devices-based terahertz parallel-plate resonators: characteristics and applications. Opt. Express, 26, 24992-25002(2018).

    [84] L. Cong, W. Cao, X. Zhang. A perfect metamaterial polarization rotator. Appl. Phys. Lett., 103, 171107(2013).

    [85] H. Tao, A. C. Strikwerda, M. Liu. Performance enhancement of terahertz metamaterials on ultrathin substrates for sensing applications. Appl. Phys. Lett., 97, 261909(2010).

    [86] Y. Chen, I. A. I. Al-Naib, J. Gu. Membrane metamaterial resonators with a sharp resonance: a comprehensive study towards practical terahertz filters and sensors. AIP Adv., 2, 022109(2012).

    [87] K. Yang, J. Li, M. Lamy De La Chapelle. A terahertz metamaterial biosensor for sensitive detection of microRNAs based on gold-nanoparticles and strand displacement amplification. Biosens. Bioelectron., 175, 112874(2021).

    [88] A. Ahmadivand, B. Gerislioglu, Z. Ramezani. Functionalized terahertz plasmonic metasensors: femtomolar-level detection of SARS-CoV-2 spike proteins. Biosens. Bioelectron., 177, 112971(2021).

    [89] W. Xu, L. Xie, J. Zhu. Gold nanoparticle-based terahertz metamaterial sensors: mechanisms and applications. ACS Photon., 3, 2308-2314(2016).

    [90] Q. Niu, L. Fu, Y. Zhong. Sensitive and specific detection of carcinoembryonic antigens using toroidal metamaterial biosensors integrated with functionalized gold nanoparticles. Anal. Chem., 95, 1123-1131(2022).

    [91] R. Zhou, C. Wang, Y. Huang. Label-free terahertz microfluidic biosensor for sensitive DNA detection using graphene-metasurface hybrid structures. Biosens. Bioelectron., 188, 113336(2021).

    [92] S. Lin, Y. Wang, Z. Peng. Detection of cancer biomarkers CA125 and CA199 via terahertz metasurface immunosensor. Talanta, 248, 123628(2022).

    [93] J. Zhou, X. Zhao, G. Huang. Molecule-specific terahertz biosensors based on an aptamer hydrogel-functionalized metamaterial for sensitive assays in aqueous environments. ACS Sens., 6, 1884-1890(2021).

    [94] S. Lin, W. Liu, X. Hou. Specific detection of n-propanol gas via terahertz metasurface sensor modified by molecularly imprinted polymer. Spectrochim. Acta A, 292, 122413(2023).

    [95] H. Liu, Y. Liu, D. Zhu. Chemical doping of graphene. J. Mater. Chem., 21, 3335-3345(2011).

    [96] W. Xu, L. Xie, J. Zhu. Terahertz biosensing with a graphene-metamaterial heterostructure platform. Carbon, 141, 247-252(2019).

    [97] S.-H. Lee, J.-H. Choe, C. Kim. Graphene assisted terahertz metamaterials for sensitive bio-sensing. Sens. Actuators B, 310, 127841(2020).

    [98] H. Yao, Z. Sun, X. Yan. Ultrasensitive, light-induced reversible multidimensional biosensing using THz metasurfaces hybridized with patterned graphene and perovskite. Nanophotonics, 11, 1219-1230(2022).

    [99] X. Yan, T. Li, G. Ma. Ultra-sensitive Dirac-point-based biosensing on terahertz metasurfaces comprising patterned graphene and perovskites. Photon. Res., 10, 280-288(2022).

    [100] S. Lin, X. Xu, F. Hu. Using antibody modified terahertz metamaterial biosensor to detect concentration of carcinoembryonic antigen. IEEE J. Sel. Top. Quantum Electron., 27, 6900207(2021).

    [101] A. Ahmadivand, B. Gerislioglu, P. Manickam. Rapid detection of infectious envelope proteins by magnetoplasmonic toroidal metasensors. ACS Sens., 2, 1359-1368(2017).

    [102] W. Liu, F. Hu, S. Lin. High sensitive and specific detection of SCCA via halloysite nanotube modified terahertz metasurface sensor. IEEE Sens. J., 23, 6728-6733(2023).

    [103] M. Zhang, S. Zhang, Q. Wang. Flexible specific determination of glucose in solution, blood serum, and sweat using a terahertz hydrogel-functionalized metamaterial. Adv. Mater. Technol., 8, 2300775(2023).

    [104] W. Guo, F. Hu, W. Liu. Molecular imprinted polymer modified terahertz metamaterial sensor for specific detection of gaseous hexanal. Mater. Lett., 322, 132468(2022).

    [105] H. Seto, S. Kamba, T. Kondo. Metal mesh device sensor immobilized with a trimethoxysilane-containing glycopolymer for label-free detection of proteins and bacteria. ACS Appl. Mater. Interfaces, 6, 13234-13241(2014).

    [106] X. Wu, B. Quan, X. Pan. Alkanethiol-functionalized terahertz metamaterial as label-free, highly-sensitive and specificbiosensor. Biosens. Bioelectron., 42, 626-631(2013).

    [107] D.-K. Lee, J.-H. Kang, J.-S. Lee. Highly sensitive and selective sugar detection by terahertz nano-antennas. Sci. Rep., 5, 15459(2015).

    [108] W. Cheng, Z. Han, Y. Du. Highly sensitive terahertz fingerprint sensing with high-Q guided resonance in photonic crystal cavity. Opt. Express, 27, 16071-16079(2019).

    [109] R. Zhao, Y. Ye, Z. Dai. Research on specific identification method of substances through terahertz metamaterial sensors. Results Phys., 43, 106055(2022).

    [110] X. Shi, Z. Zhao, Z. Han. Highly sensitive and selective gas sensing using the defect mode of a compact terahertz photonic crystal cavity. Sens. Actuators B, 274, 188-193(2018).

    [111] P. Weis, J. L. Garcia-Pomar, R. Beigang. Hybridization Induced Transparency in composites of metamaterials and atomic media. Opt. Express, 19, 23573-23580(2011).

    [112] K.-J. Boller, A. Imamoğlu, S. E. Harris. Observation of electromagnetically induced transparency. Phys. Rev. Lett., 66, 2593-2596(1991).

    [113] S. G. Rodrigo, F. J. García-Vidal, L. Martín-Moreno. Theory of absorption-induced transparency. Phys. Rev. B, 88, 155126(2013).

    [114] R. Adato, A. Artar, S. Erramilli. Engineered absorption enhancement and induced transparency in coupled molecular and plasmonic resonator systems. Nano Lett., 13, 2584-2591(2013).

    [115] J. Xie, X. Zhu, X. Zang. Metamaterial-enhanced terahertz vibrational spectroscopy for thin film detection. Opt. Mater. Express, 8, 128-135(2018).

    [116] F. Shen, J. Qin, Z. Han. Planar antenna array as a highly sensitive terahertz sensor. Appl. Opt., 58, 540-544(2019).

    [117] A. Tittl, A. Leitis, M. Liu. Imaging-based molecular barcoding with pixelated dielectric metasurfaces. Science, 360, 1105-1109(2018).

    [118] A. Leitis, A. Tittl, M. Liu. Angle-multiplexed all-dielectric metasurfaces for broadband molecular fingerprint retrieval. Sci. Adv., 5, eaaw2871(2019).

    [119] Y. Xie, X. Liu, J. Zhou. Enhancing trace terahertz fingerprint sensing by the lossy silicon metagrating with a gold mirror. IEEE Trans. Microw. Theory Technol., 1-10(2023).

    [120] J. Zhu, S. Jiang, Y. Xie. Enhancing terahertz molecular fingerprint detection by a dielectric metagrating. Opt. Lett., 45, 2335-2338(2020).

    [121] Z. Zhang, C. Zhong, F. Fan. Terahertz polarization and chirality sensing for amino acid solution based on chiral metasurface sensor. Sens. Actuators B, 330, 129315(2021).

    [122] T. Zhang, J. Liu, W. Shi. Enhancing terahertz circular dichroism spectrum of amino acid chiral enantiomers by all-dielectric metasurface. Sens. Actuators A, 348, 114001(2022).

    [123] Z. Zhang, T. Zhang, F. Fan. Terahertz polarization sensing of bovine serum albumin proteolysis on curved flexible metasurface. Sens. Actuators A, 338, 113499(2022).

    [124] T. Zhang, F. Fan, J. Cheng. Terahertz polarization sensing for protein concentration and a crystallization process on a reflective metasurface. Appl. Opt., 61, 6391-6397(2022).

    [125] L. Liu, T. Li, Z. Liu. Terahertz polarization sensing based on metasurface microsensor display anti-proliferation of tumor cells with aspirin. Biomed. Opt. Express, 11, 2416-2430(2020).

    [126] Z. Zhang, F. Fan, W. Shi. Terahertz circular polarization sensing for protein denaturation based on a twisted dual-layer metasurface. Biomed. Opt. Express, 13, 209-221(2022).

    [127] Z. Zhang, G. Yang, F. Fan. Terahertz circular dichroism sensing of living cancer cells based on microstructure sensor. Anal. Chim. Acta, 1180, 338871(2021).

    [128] M. Amin, O. Siddiqui, H. Abutarboush. A THz graphene metasurface for polarization selective virus sensing. Carbon, 176, 580-591(2021).

    [129] C. Zhong, F. Fan, Z. Zhang. Terahertz polarization sensing based on the saccharide-PVA mixture film coated on the flexible metasurface sensor. Opt. Laser Eng., 149, 106798(2022).

    [130] J. Liu, T. Zhang, Z. Tan. Chiral enantiomer recognition of amino acids enhanced by terahertz spin beam separation based on a Pancharatnam-Berry metasurface. Opt. Lett., 48, 440-443(2023).

    [131] S. Q. Du, H. Li, L. Xie. Vibrational frequencies of anti-diabetic drug studied by terahertz time-domain spectroscopy. Appl. Phys. Lett., 100, 143702(2012).

    [132] A. Roggenbuck, H. Schmitz, A. Deninger. Coherent broadband continuous-wave terahertz spectroscopy on solid-state samples. New J. Phys., 12, 043017(2010).

    [133] M. Zhang, Z. Yang, M. Tang. Terahertz spectroscopic signatures of microcystin aptamer solution probed with a microfluidic chip. Sensors, 19, 534(2019).

    [134] D. Jahn, A. Soltani, J. C. Balzer. Fabry-Pérot interferometer for sensing polar liquids at terahertz frequencies. J. Appl. Phys., 121, 204502(2017).

    [135] F. Miyamaru, K. Hattori, K. Shiraga. Highly sensitive terahertz sensing of glycerol-water mixtures with metamaterials. J. Infrared Millim. Terahertz Waves, 35, 198-207(2014).

    [136] L. Chen, Y. Ge, X. Zang. Tunable phase transition via radiative loss controlling in a terahertz attenuated total reflection-based metasurface. IEEE Trans. Terahertz Sci. Technol., 9, 643-650(2019).

    [137] Z. Chang, J. Zhang, P. Tang. Frequency–angle two-dimensional reflection coefficient modeling based on terahertz channel measurement. Front. Inf. Technol. Electron. Eng., 24, 626-632(2023).

    [138] A. Sadeqi, H. Rezaei Nejad, R. E. Owyeung. Three dimensional printing of metamaterial embedded geometrical optics (MEGO). Microsyst. Nanoeng., 5, 16(2019).

    [139] H. Pei, J. Jing, Y. Chen. 3D printing of PVDF-based piezoelectric nanogenerator from programmable metamaterial design: promising strategy for flexible electronic skin. Nano Energy, 109, 108303(2023).

    [140] N. Born, R. Gente, I. Al-Naib. Laser beam machined free-standing terahertz metamaterials. Electron. Lett., 51, 1012-1014(2015).

    [141] B. Ng, S. M. Hanham, V. Giannini. Lattice resonances in antenna arrays for liquid sensing in the terahertz regime. Opt. Express, 19, 14653-14661(2011).

    [142] S. J. Park, J. T. Hong, S. J. Choi. Detection of microorganisms using terahertz metamaterials. Sci. Rep., 4, 4988(2014).

    [143] S. J. Park, S. A. N. Yoon, Y. H. Ahn. Dielectric constant measurements of thin films and liquids using terahertz metamaterials. RSC Adv., 6, 69381-69386(2016).

    [144] K. Shih, P. Pitchappa, M. Manjappa. Microfluidic metamaterial sensor: selective trapping and remote sensing of microparticles. J. Appl. Phys., 121, 023102(2017).

    [145] P. Pitchappa, C. P. Ho, Y.-S. Lin. Micro-electro-mechanically tunable metamaterial with enhanced electro-optic performance. Appl. Phys. Lett., 104, 151104(2014).

    [146] P. Q. Liu, F. Valmorra, C. Maissen. Electrically tunable graphene anti-dot array terahertz plasmonic crystals exhibiting multi-band resonances. Optica, 2, 135-140(2015).

    [147] Y. Zhao, Y. Zhang, Q. Shi. Dynamic photoinduced controlling of the large phase shift of terahertz waves via vanadium dioxide coupling nanostructures. ACS Photon., 5, 3040-3050(2018).

    [148] J. Schalch, G. Duan, X. Zhao. Terahertz metamaterial perfect absorber with continuously tunable air spacer layer. Appl. Phys. Lett., 113, 061113(2018).

    [149] L. Sun, L. Xu, J. Wang. A pixelated frequency-agile metasurface for broadband terahertz molecular fingerprint sensing. Nanoscale, 14, 9681-9685(2022).

    [150] Y. Xie, Y. Ma, X. Liu. Dual-degree-of-freedom multiplexed metasensor based on quasi-BICs for boosting broadband trace isomer detection by THz molecular fingerprint. IEEE J. Sel. Top. Quantum Electron., 29, 8600110(2023).

    [151] Y. Wang, J. Zhang, M. Wang. Ultrasensitive metasurface-based sensors for fingerprint spectra extraction of L-glutamate at ultra-low concentration. Opt. Commun., 550, 130005(2024).

    [152] W. Fu, L. Sun, H. Cao. Qualitative and quantitative recognition of volatile organic compounds in their liquid phase based on terahertz microfluidic EIT meta-sensors. IEEE Sens. J., 23, 12775-12784(2023).

    [153] W. Xu, Y. Huang, R. Zhou. Metamaterial-free flexible graphene-enabled terahertz sensors for pesticide detection at bio-interface. ACS Appl. Mater. Interfaces, 12, 44281-44287(2020).

    [154] W. Xu, S. Wang, W. Li. Pesticide detection with covalent-organic-framework nanofilms at terahertz band. Biosens. Bioelectron., 209, 114274(2022).

    [155] X. Li, D. Ding, D. Yan. Boosting of the terahertz absorption spectrum based on one-dimensional plastic photonic crystals. Phys. Chem. Chem. Phys., 25, 21324-21330(2023).

    [156] Z. Han, A. M. Soehartono, B. Gu. Tunable hybridization induced transparency for efficient terahertz sensing. Opt. Express, 27, 9032-9039(2019).

    [157] M. Sun, Z. Han. Highly sensitive terahertz fingerprint sensing based on the quasi-guided modes in a distorted photonic lattice. Opt. Express, 31, 10947-10954(2023).

    [158] L. O. H. Wijeratne, D. R. Kiv, A. R. Aker. Using machine learning for the calibration of airborne particulate sensors. Sensors, 20, 99(2019).

    [159] N. Vélez Rivera, J. Gómez-Sanchis, J. Chanona-Pérez. Early detection of mechanical damage in mango using NIR hyperspectral images and machine learning. Biosyst. Eng., 122, 91-98(2014).

    [160] S. Yan, S. Wang, J. Qiu. Raman spectroscopy combined with machine learning for rapid detection of food-borne pathogens at the single-cell level. Talanta, 226, 122195(2021).

    [161] F. Qu, L. Lin, Z. Chen. A terahertz multi-band metamaterial absorber and its synthetic evaluation method based on multivariate resonant response fusion for trace pesticide detection. Sens. Actuators B, 336, 129726(2021).

    [162] S. Lin, J. Chen, W. Liu. Detection of biomarkers using terahertz metasurface sensors and machine learning. Appl. Opt., 62, 1027-1034(2023).

    Jiaming Lyu, Lihao Huang, Lin Chen, Yiming Zhu, Songlin Zhuang. Review on the terahertz metasensor: from featureless refractive index sensing to molecular identification[J]. Photonics Research, 2024, 12(2): 194
    Download Citation