• Photonic Sensors
  • Vol. 11, Issue 1, 1 (2021)
Yunjiang RAO1、2、3、*, Zinan WANG1, Huijuan WU1, Zengling RAN1、3, and Bing HAN1
Author Affiliations
  • 1Fiber Optics Research Center (FORC), Key Lab of Optical Fiber Sensing & Communications, University of Electronic
  • 2cience &Technology of China, Chengdu 611731, China
  • 3Research Center for Optical Fiber Sensing, Zhejiang Laboratory, Hangzhou 310000, China
  • show less
    DOI: 10.1007/s13320-021-0619-4 Cite this Article
    Yunjiang RAO, Zinan WANG, Huijuan WU, Zengling RAN, Bing HAN. Recent Advances in Phase-Sensitive Optical Time Domain Reflectometry (Ф-OTDR)[J]. Photonic Sensors, 2021, 11(1): 1 Copy Citation Text show less
    References

    [1] J. Park, W. Lee, and H. F. Taylor, “Fiber optic intrusion sensor with the configuration of an optical time-domain reflectometer using coherent interference of Rayleigh backscattering,” International Society for Optics and Photonics, China, 1998, 3555: 49–56.

    [2] C. D. Butter and G. B. Hocker, “Fiber optics strain gauge,” Applied Optics, 1978, 17(18): 2867–2869.

    [3] H. F. Taylor and C. Lee, “Apparatus and method for fiber optic intrusion sensing,” U.S. Patent 5194847, 1993.

    [4] R. Juskaitis, A. M. Mamedov, V. T. Potapov, and S. V. Shatalin, “Interferometry with Rayleigh backscattering in a single-mode optical fiber,” Optics Letters, 1994, 19(3): 225–227.

    [5] K. N. Choi and H. F. Taylor, “Spectrally stable Er-fiber laser for application in phase-sensitive optical time-domain reflectometry,” IEEE Photonics Technology Letters, 2003, 15(3): 386–388.

    [6] J. C. Juarez, E. W. Maier, K. N. Choi, and H. F. Taylor, “Distributed fiber-optic intrusion sensor system,” Journal of Lightwave Technology, 2005, 23(6): 2081–2087.

    [7] J. C. Juarez and H. F. Taylor, “Distributed fiber optic intrusion sensor system for monitoring long perimeters,” SPIE, 2005, 5778: 692–703.

    [8] J. C. Juarez and H. F. Taylor, “Field test of a distributed fiber-optic intrusion sensor system for long perimeters,” Applied Optics, 2007, 46(11): 1968–1971.

    [9] K. L. Xie, Y. J. Rao, and Z. L. Ran, “Distributed optical fiber sensing system based of Rayleigh scattering light Φ-OTDR using single-mode fiber laser with high power and narrow linewidth,” Acta Optica Sinica, 2008, 28(3): 569–572.

    [10] J. Z. Li, Y. J. Rao, Z. L. Ran, et al., “Distributed optical fiber perturbation sensing system combined with Ф-OTDR and POTDR,” Acta Optica Sinica, 2009, 38(5): 1108–1113.

    [11] Z. Pan, K. Liang, Q. Ye, H. Cai, R. Qu, and Z. Fang, “Phase-sensitive OTDR system based on digital coherent detection,” in Asia Communications and Photonics Conference and Exhibition, China, 2011, pp. 1–6.

    [12] A. Masoudi, M. Belal, and T. P. Newson, “A distributed optical fiber dynamic strain sensor based on phase-OTDR,” Measurement Science and Technology, 2013, 24(8): 085204.

    [13] Z. Pan, Z. Wang, Q. Ye, H. Cai, R. Qu, and Z. Fang, “High sampling rate multi-pulse phase-sensitive OTDR employing frequency division multiplexing,” 23rd International Conference on Optical Fiber Sensors, Spain, 2014, 9157: 91576X-1.

    [14] Y. Shang, Y. Yang, C. Wang, X. Liu, C. Wang, and G. Peng, “Optical fiber distributed acoustic sensing based on the self-interference of Rayleigh backscattering,” Measurement, 2016, 79: 222–227.

    [15] Z. Wang, L. Zhang, S. Wang, N. Xue, F. Peng, M Fan, et al., “Coherent Φ-OTDR based on I/Q demodulation and homodyne detection,” Optics Express, 2016, 24(2): 853–858.

    [16] S. Wang, X. Fan, Q. Liu, and Z. He, “Distributed fiber-optic vibration sensing based on phase extraction from time-gated digital OFDR,” Optics Express, 2015, 23(26): 33301–33309.

    [17] J. Pastor-Graells, H. F. Martins, A. Garcia-Ruiz, S. Martin-Lopez, and M. Gonzalez-Herraez, “Single-shot distributed temperature and strain tracking using direct detection phase-sensitive OTDR with chirped pulses,” Optics Express, 2016, 24(12): 13121–13133.

    [18] J. Pastor-Graells, J. Nuno, M. R. Fernandez-Ruiz, A. Garcia-Ruiz, H. F. Martins, S. Martin-Lopez, et al., “Chirped-pulse phase-sensitive reflectometer assisted by first-order Raman amplification,” Journal of Lightwave Technology, 2017, 35(21): 4677–4683.

    [19] M. R. Fernández-Ruiz, L. Costa, and H. F. Martins, “Distributed acoustic sensing using chirped-pulse phase-sensitive OTDR technology,” Sensors, 2019, 19(20): 4368.

    [20] D. Chen, Q. Liu, and Z. He, “High-fidelity distributed fiber-optic acoustic sensor with fading noise suppressed and sub-meter spatial resolution,” Optics Express, 2018, 26(13): 16138–16146.

    [21] J. Xiong, Z. Wang, Y. Wu, H. Wu, and Y. Rao, “Long-distance distributed acoustic sensing utilizing negative frequency band,” Optics Express, 2020, 28(24): 35844–35856.

    [22] P. Jousset, T. Reinsch, T. Ryberg, H. Blanck, A. Clarke, R. Aghayev, et al., “Dynamic strain determination using fiber-optic cables allows imaging of seismological and structural features,” Nature Communications, 2018, 9(1): 2509.

    [23] E. F. Williams, M. R. Fernández-Ruiz, R. Magalhaes, R. Vanthillo, Z. Zhan, M. González-Herráez, et al., “Distributed sensing of microseisms and teleseisms with submarine dark fibers,” Nature Communication, 2019, 10(1): 5778.

    [24] F. Peng, H. Wu, X. H. Jia, Y. J. Rao, Z. N. Wang, and Z. P. Peng, “Ultra-long high-sensitivity Φ-OTDR for high spatial resolution intrusion detection of pipelines,” Optics Express, 2014, 22(11): 13804–13810.

    [25] Y. J. Rao, J. Luo, Z. L. Ran, J. F. Yue, X. D. Luo, and Z. Zhou, “Long-distance fiber-optic Φ-OTDR intrusion sensing system,” 20th International Conference on Optical Fibre Sensors, United Kingdom, 2009, 7503: 75031O.

    [26] Z. Peng, Y. Rao, F. Peng, H. J. Wu, X. H. Jia, and X. Y. Li, “Long distance phase-sensitive optical time-domain reflectometer based on heterodyne detection and forward Raman amplification,” Journal of Optoelectronics Laser, 2014, 25(4): 724–729.

    [27] H. F. Martins, S. Martín-López, P. Corredera, M. L. Filograno, O. Fraz-o, and M. Gonzalez-Herráez, “Phase-sensitive optical time domain reflectometer assisted by first-order Raman amplification for distributed vibration sensing over > 100 km,” Journal of Lightwave Technology, 2014, 32(8): 1510–1518.

    [28] Z. N. Wang, J. J. Zeng, J. Li, M. Q. Fan, H. Wu, F. Peng, et al., “Ultra-long phase-sensitive OTDR with hybrid distributed amplification,” Optics Letters, 2014, 39(20): 5866–5869.

    [29] J. Li, Z. Wang, L. Zhang, F. Peng, S. Xiao, H. Wu, et al., “124 km phase-sensitive OTDR with Brillouin amplification,” in 23rd International Conference on Optical Fibre Sensors, Spain, 2014, pp. 91575Z.

    [30] X. Jia, Y. Rao, Z. Wang, W. L. Zhang, C. X. Yuan, X. D. Yan, et al., “Distributed Raman amplification using ultra-long fiber laser with a ring cavity: characteristics and sensing application,” Optics Express, 2013, 21(18): 21208–21217.

    [31] C. Headley and G. P. Agrawal, Raman amplification in fiber optical communication systems, America: Academic Press, 2005.

    [32] M. Alahbabi, Y. Cho, and T. Newson, “150-km-range distributed temperature sensor based on coherent detection of spontaneous Brillouin backscatter and in-line Raman amplification,” Journal of the Optical Society of America B, 2005, 22(6): 1321–1324.

    [33] Y. Rao, S. Feng, Q. Jiang, and Z. Ran, “Ultra-long distance (300 km) fiber Bragg grating sensor system using hybrid EDF and Raman amplification,” in 20th International Conference on Optical Fibre Sensors, United Kingdom, 2009, pp. 75031Q.

    [34] Z. N. Wang, J. Li, M. Q. Fan, L. Zhang, F. Peng, H. Wu, et al., “Phase-sensitive optical time-domain reflectometry with Brillouin amplification,” Optics Letters, 2014, 39(15): 4313–4316.

    [35] Q. Yan, M. Tian, X. Li, Q. Yang, and Y. Xu, “Coherent Φ-OTDR based on polarization-diversity integrated coherent receiver and heterodyne detection,” in 2017 25th Optical Fiber Sensors Conference (OFS), South Korea, 2017, pp. 1032383.

    [36] H. Gabai and A. Eyal, “On the sensitivity of distributed acoustic sensing,” Optics Letters, 2016, 41(24): 5648–5651.

    [37] A. Masoudi and T. P. Newson, “High spatial resolution distributed optical fiber dynamic strain sensor with enhanced frequency and strain resolution,” Optics Letters, 2017, 42(2): 290–293.

    [38] X. He, S. Xie, F. Liu, S. Cao, L. Gu, X. Zheng, et al., “Multi-event waveform-retrieved distributed optical fiber acoustic sensor using dual-pulse heterodyne phase-sensitive OTDR,” Optics Letters, 2017, 42(3): 442–445.

    [39] J. Xiong, Z. Wang, Y. Wu, Y. Chen, and Y. Rao, “100 km dynamic strain sensing via CP-ΦOTDR,” in 2018 Asia Communications and Photonics Conference (ACP), China, 2018, pp. 1–3.

    [40] Z. Wang, Y. Fu, and Y. Rao, “Method for distributedly measuring polarization transmission matrices of optical fiber and system thereof,” U.S. Patent 9841349, 2017.

    [41] Z. Wang, Y. Fu, X. Qian, L. Zhang, and Y. Rao, “Proposal for distributed measurement of Müller matrix in optical fibers,” in 2016 15th International Conference on Optical Communications and Networks (ICOCN), China, 2016, pp. 1–3.

    [42] Y. Chen, Y. Fu, J. Xiong, and Z. Wang, “Distributed fiber birefringence measurement using pulse-compression Φ-OTDR,” Photonic S1ensors, DOI. 10.1007/s13320-020-0604-3.

    [43] Y. Fu, N. Xue, Z. Wang, B. Zhang, J. Xiong, and Y. Rao, “Impact of I/Q amplitude imbalance on coherent Φ-OTDR,” Journal of Lightwave Technology, 2018, 36(4): 1069–1075.

    [44] N. Xue, Y. Fu, C. Lu, J. Xiong, L. Yang, and Z. Wang, “Characterization and compensation of phase offset in Φ-OTDR with heterodyne detection,” Journal of Lightwave Technology, 2018, 36(23): 5481–5487.

    [45] J. Xiong, L. Xie, and Z. Wang, “Optical pulse compression radar at double repetition rate with both positive and negative beat frequencies,” in 2017 International Topical Meeting on Microwave Photonics (MWP), China, 2017, pp. 1–4.

    [46] Z. Wang, J. Xiong, L. Xie, and Y. Rao, “Method of improving measurement speed of distributed optical fiber sensor by adopting orthogonal signals and system thereof,” U.S. Patent 10564012B2, 2020.

    [47] Z. Wang, J. Jiang, Z. Wang, J. Xiong, and Y. J. Rao, “Bandwidth-enhanced quasi-distributed acoustic sensing with interleaved chirped pulses,” IEEE Sensors Journal, 2020, 20(21): 12739–12743.

    [48] J. Xiong, J. Jiang, Y. Wu, Y. Chen, L. Xie, Y. Fu, et al., “Chirped-pulse coherent-OTDR with predistortion,” Journal of Optics, 2018, 20(3): 034001.

    [49] Z. Wang, B. Zhang, J. Xiong, Y. Fu, S. Lin, J. Jiang, et al., “Distributed acoustic sensing based on pulse-coding phase-sensitive OTDR,” IEEE Internet of Things Journal, 2018, 6(4): 6117–6124.

    [50] Y. Wu, Z. Wang, J. Xiong, J. Jiang, and Y. Rao, “Bipolar-coding Φ-OTDR with interference fading elimination and frequency drift compensation,” Journal of Lightwave Technology, 2020, 38(21): 6121–6128.

    [51] J. Jiang, Z. Wang, Z. Wang, Y. Wu, S. Lin, J. Xiong, et al., “Coherent Kramers-Kronig receiver for Φ-OTDR,” Journal of Lightwave Technology, 2019, 37(18): 4799–4807.

    [52] Y. Wu, Z. Wang, J. Xiong, J. Jiang, S. Lin, and Y. Chen, “Interference fading elimination with single rectangular pulse in Φ-OTDR,” Journal of Lightwave Technology, 2019, 37(13): 3381–3387.

    [53] S. Lin, Z. Wang, J. Xiong, Y. Fu, J. Jiang, Y. Wu, et al., “Rayleigh fading suppression in one-dimensional optical scatters,” IEEE Access, 2019, 7: 17125–17132.

    [54] J. Xiong, Z. Wang, Y. Wu, and Y. Rao, “Single-shot COTDR using sub-chirped-pulse extraction algorithm for distributed strain sensing,” Journal of Lightwave Technology, 2020, 38(7): 2028–2036.

    [55] R. D. Pascoe and T. N. Eichorn, “What is communication-based train control-” IEEE Vehicular Technology Magazine, 2009, 4(4): 16–21.

    [56] P. Ripamonti, “Circuit for detecting unbalance of the traction current in a track circuit,” U.S. Patent 4432517, 1984.

    [57] F. Peng, N. Duan, Y. Rao, and J. Li, “Real-time position and speed monitoring of trains using phase-sensitive OTDR,” IEEE Photonics Technology Letters, 2014, 26(20): 2055–2057.

    [58] Y. Zhan, “The harm and countermeasures of soil oil pollution in China,” Environmental Pollution and Control, 2008, 30(3): 91–93.

    [59] A. Egorov, J. Correa, A. Bóna, R. Pevzner, K. Tertyshnikov, S. Glubokovskikh, et al., “Elastic full-waveform inversion of vertical seismic profile data acquired with distributed acoustic sensors,” Geophysics, 2018, 83(3): R273–R281.

    [60] K. N. Madsen, S. Dümmong, A. Kritski, D. Finfer, P.N. Travis, T. Bostick, et al., “Simultaneous multiwell VSP using distributed acoustic sensing,” in Proceedings of Second EAGE Workshop on Permanent Reservoir Monitoring, Malta, 2013.

    [61] J. Ni, C. Wang, Y. Shang, X. Zhang, and Y. Zhao, “Distributed fiber-optic acoustic sensing for petroleum geology exploration,” Journal of Physics: Conference Series, 2018, 1065(65): 252029.

    [62] A. Mateeva, J. Lopez, H. Potters, J. Mestayer, B. Cox, D. Kiyashchenko, et al., “Distributed acoustic sensing for reservoir monitoring with vertical seismic profiling,” Geophysical Prospecting, 2014, 62(4): 679–692.

    [63] http://www.cnpc.com.cn/cnpc/sdkjjz/202001/583651 6fb34a48e590ebff3caf0afdd6.shtml.

    [64] J. Cole, R. Johnson, and P. Bhuta, “Fiber-optic detection of sound,” The Journal of the Acoustical Society of America, 1977, 62(5): 1136–1138.

    [65] J. A. Bucaro, H. D. Dardy, and E. F. Carome, “Optical fiber acoustic sensor,” Applied Optics, 1977, 16(7): 1761–1762.

    [66] D. J. Hill, P. J. Nash, D. A. Jackson, D. J. Webb, S. F. O'Neill, I. Bennion, et al., “Fiber laser hydrophone array,” in Fiber Optic Sensor Technology and Applications, United States, 1999, pp. 55–66.

    [67] C. K. Kirkendall and A. Dandridge, “Overview of high performance fibre-optic sensing,” Journal of Physics D: Applied Physics, 2004, 37(18): R197.

    [68] X. Liu, C. Wang, Y. Shang, C. Wang, W. Zhao, G. Peng, et al., “Distributed acoustic sensing with Michelson interferometer demodulation,” Photonic Sensors, 2017, 7(3): 193–198.

    [69] Y. Yang, T. Xu, S. Feng, J. Huang, and F. Li, “Optical fiber hydrophone based on distributed acoustic sensing,” in Fiber Optic Sensing and Optical Communication, China, 2018, pp. 108490B.

    [70] L. Y. Shao, S. Liu, S. Bandyopadhyay, F. Yu, W. Xu, C. Wang, et al., “Data-driven distributed optical vibration sensors: a review,” IEEE Sensors Journal, 2019, 20(12): 6224–6239.

    [71] Y. Lu, T. Zhu, L. Chen, and X. Bao, “Distributed vibration sensor based on coherent detection of phase-OTDR,” Journal of lightwave Technology, 2010, 28(22): 3243–3249.

    [72] T. Zhu, X. Xiao, Q. He, and D. Diao, “Enhancement of SNR and spatial resolution in phi-OTDR system by using two-dimensional edge detection method,” Journal of Lightwave Technology, 2013, 31(17): 2851–2856.

    [73] Z. Qin, L. Chen, and X. Bao, “Wavelet denoising method for improving detection performance of distributed vibration sensor,” IEEE Photonics Technology Letters, 2012, 24(7): 542–544.

    [74] X. Hui, S. Zheng, J. Zhou, H. Chi, X. Jin, and X. Zhang, “Hilbert-Huang transform time-frequency analysis in phi-OTDR distributed sensor,” IEEE Photonics Technology Letters, 2014, 26(23): 2403–2406.

    [75] H. Wu, J. Wang, X. Wu, and Y. Wu, “Real intrusion detection for distributed fiber fence in practical strong fluctuated noisy backgrounds,” Sensor Letters, 2012, 10(7): 1557–1561.

    [76] H. Wu, S. Xiao, X. Li, Z. Wang, J. Xu, and Y. Rao, “Separation and determination of the disturbing signals in phase-sensitive optical time domain reflectometry(Φ-OTDR),” Journal of Lightwave Technology, 2015, 33(15): 3156–3162.

    [77] D. Tan, X. Tian, W. Sun, Y. Zhou, L. Liu, Y. Ma, et al., “An oil and gas pipeline pre-warning system based on Φ-OTDR,” OFS2014 23rd International Conference on Optical Fiber Sensors, Spain, 2014, 9157: 91578W.

    [78] H. Zhu, C. Pan, and X. Sun, “Vibration waveform reproduction and location of OTDR based distributed optical-fiber vibration sensing system,” SPIE, 2013, 9062: 89931P.

    [79] N. Fang, L. Wang, D. Jia, C. Shan, and Z. Huang, “Walking intrusion signal recognition method for fiber fence system,” 2009 Asia Communications and Photonics conference and Exhibition (ACP), China, 2010, 52: 2381–2384.

    [80] Z. Wang, Z. Pan, Q. Ye, H. Cai, and Z. Fang, “Fast pattern recognition based on frequency spectrum analysis used for intrusion alarming in optical fiber fence,” Chinese Journal of Lasers, 2015, 42(4): 0405010.

    [81] Q. Sun, H. Feng, X. Yan, and Z. Zeng, “Recognition of a phase-sensitivity OTDR sensing system based on morphologic feature extraction,” Sensors, 2015, 15(7): 15179–15197.

    [82] H. F. Martins, D. Piote, J. Tejedor, J. Macias-Guarasa, J. Pastor-Graells, S. Martin-Lopez, et al., “Early detection of pipeline integrity threats using a smart fiber optic surveillance system: the PIT-STOP project,” International Conference on Optical Fibre Sensors (OFS24), Brazil, 2015, 9634: 96347X.

    [83] H. Wu, Y. Qian, W. Zhang, and C. Tang, “Feature extraction and identification in distributed optical-fiber vibration sensing system for oil pipeline safety monitoring,” Photonic Sensors, 2017, 7(4): 305–310.

    [84] A. K. Fedorov, M. N. Anufriev, A. A. Zhirnov, K. V. Stepanov, E. T. Nesterov, D. E. Namiot, et al., “Note: Gaussian mixture model for event recognition in optical time-domain reflectometry based sensing systems,” Review of Scientific Instruments, 2016, 87(3): 036107.

    [85] Q. Tian, C. Zhao, Y. Zhang, and H. Qu, “Intrusion signal recognition in OFPS under multi-level wavelet decomposition based on RVFL neural network,” Optik, 2017, 146: 38–50.

    [86] H. Wu, X. Liu, Y. Xiao, and Y. Rao, “A dynamic time sequence recognition and knowledge mining method based on the hidden Markov models (HMMS) for pipeline safety monitoring with φ-OTDR,” Journal of Lightwave Technology, 2019, 37(19): 4991–5000.

    [87] L. Wen, X. Li, L. Gao, and Y. Zhang, “A new convolutional neural network-based data-driven fault diagnosis method,” IEEE Transactions on Industrial Electronics, 2017, 65(7): 5990–5998.

    [88] T. Ince, S. Kiranyaz, L. Eren, M. Askar, and M. Gabbouj, “Real-time motor fault detection by 1-D convolutional neural networks,” IEEE Transactions on Industrial Electronics, 2016, 63(11): 7067–7075.

    [89] J. Tejedor, J. Macias-Guarasa, H. Martins, S. Martin-Lopez, and M. Gonzalez-Herraez, “A contextual GMM-HMM smart fiber optic surveillance system for pipeline integrity threat detection,” Journal of Lightwave Technology, 2019, 37(18): 4514–4522.

    [90] J. Wu, L. Y. Guan, M. Bao, Y. Xu, and W. Ye, “Vibration events recognition of optical fiber based on multi-scale 1-D CNN,” Opto-Electronic Engineering, 2019, 46(05): 180493.

    [91] H. Wu, J. Chen, X. Liu, Y. Xiao, M. Wang, Y. Zheng, et al., “One-dimensional CNN-based intelligent recognition of vibrations in pipeline monitoring with DAS,” Journal of Lightwave Technology, 2019, 37(17): 4359–4366.

    [92] H. Wu, M. Yang, S. Yang, H. Lu, C. Wang, and Y. Rao, “A novel DAS signal recognition method based on spatiotemporal information extraction with 1DCNNs-BiLSTM network,” IEEE Access, 2020, 8: 119448–119457.

    [93] S. Ioffe and C. Christian, “Batch normalization: accelerating deep network training by reducing internal covariate shift,” IEEE Conference on Computer Vision and Pattern Recognition, Boston, 2015, pp. 03167.

    [94] S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, et al., “Random distributed feedback fibre laser,” Nature Photonics, 2010, 4(4): 231–235.

    [95] B. Han, Y. Rao, H. Wu, J. Yao, H. Guan, R. Ma, et al., “Low-noise high-order Raman fiber laser pumped by random lasing,” Optics Letters, 2020, 45(20): 5804–5807.

    [96] Y. Rao, X. Jiang, B. Han, et al., “An acoustic sensitization fiber based on cladding softening and multi-cladding structure,” C.N. Patent 110045457, 2020.

    [97] N. J. Lindsey, T. C. Dawe, and J. B. Ajo-Franklin, “Illuminating seafloor faults and ocean dynamics with dark fiber distributed acoustic sensing,” Science, 2019, 366(6469): 1103–1107.

    [98] B. N. Kuvshinov, “Interaction of helically wound fibre-optic cables with plane seismic waves,” Geophysical Prospecting, 2016, 64(3): 671–688.

    [99] J. C. Hornman, “Field trial of seismic recording using distributed acoustic sensing with broadside sensitive fibre-optic cables,” Geophysical Prospecting, 2016, 65(1): 35–46.

    [100] ] B. Han, H. Guan, J. Yao, et al., “Distributed acoustic sensing with sensitivity-enhanced optical cable,” IEEE Sensors Journal, 2020, DOI: 10.1109/JSEN.2020.3035002.

    Yunjiang RAO, Zinan WANG, Huijuan WU, Zengling RAN, Bing HAN. Recent Advances in Phase-Sensitive Optical Time Domain Reflectometry (Ф-OTDR)[J]. Photonic Sensors, 2021, 11(1): 1
    Download Citation