• Acta Physica Sinica
  • Vol. 69, Issue 5, 053101-1 (2020)
Ying-Jin Cheng1、*, Chao-Fei Yang1, Gang Xue1, Tao Wang1, Lei Zhang2, and Mei-E Li2
Author Affiliations
  • 1Luoyang Ship Material Research Institute, Luoyang 471023, China
  • 2State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049, China
  • show less
    DOI: 10.7498/aps.69.20191775 Cite this Article
    Ying-Jin Cheng, Chao-Fei Yang, Gang Xue, Tao Wang, Lei Zhang, Mei-E Li. Investigation of interaction between α-Fe metal and H atom by ab-initio method [J]. Acta Physica Sinica, 2020, 69(5): 053101-1 Copy Citation Text show less
    Crystalline structure of α-Fe+H: (a) T-site; (b) O-site.
    Fig. 1. Crystalline structure of α-Fe+H: (a) T-site; (b) O-site.
    Partial electronic density of state of α-Fe+H (T-site): (a) Free H atom and interstitial H atom; (b) Fe atom in perfect α-Fe crystal and the nearest neighbour of interstitial H atom; (c) H atom in tetrahedral interstice; (d) the nearest neighbour Fe atom of interstitial H atom.
    Fig. 2. Partial electronic density of state of α-Fe+H (T-site): (a) Free H atom and interstitial H atom; (b) Fe atom in perfect α-Fe crystal and the nearest neighbour of interstitial H atom; (c) H atom in tetrahedral interstice; (d) the nearest neighbour Fe atom of interstitial H atom.
    Electron density difference of α-Fe+H(T-site).
    Fig. 3. Electron density difference of α-Fe+H(T-site).
    Crystalline structure of α-Fe+(nH-Vac): (a) α-Fe+Vac; (b)α-Fe+(3H-Vac); (c) α-Fe+(4H-Vac); (d) α-Fe+(5H-Vac); (e) α-Fe+(1H-Vac); (f) α-Fe+(2H-Vac); (g) α-Fe+(6H-Vac).
    Fig. 4. Crystalline structure of α-Fe+(nH-Vac): (a) α-Fe+Vac; (b)α-Fe+(3H-Vac); (c) α-Fe+(4H-Vac); (d) α-Fe+(5H-Vac); (e) α-Fe+(1H-Vac); (f) α-Fe+(2H-Vac); (g) α-Fe+(6H-Vac).
    Isoelectronic density surface and electron density difference of α-Fe+(nH-Vac): (a) Electron density difference of α-Fe+Vac in surface (100); (b) electron density difference of α-Fe+Vac in surface (110); (c) isoelectric density surface of α-Fe+Vac; (d) electron density difference of α-Fe+(2H-Vac) in surface (010); (e) isoelectric density surface of α-Fe+(2H-Vac).
    Fig. 5. Isoelectronic density surface and electron density difference of α-Fe+(nH-Vac): (a) Electron density difference of α-Fe+Vac in surface (100); (b) electron density difference of α-Fe+Vac in surface (110); (c) isoelectric density surface of α-Fe+Vac; (d) electron density difference of α-Fe+(2H-Vac) in surface (010); (e) isoelectric density surface of α-Fe+(2H-Vac).
    Crystalline structure of α-Fe+Vac+H(T-site).
    Fig. 6. Crystalline structure of α-Fe+Vac+H(T-site).
    Formation energy of defects at 0 K for different H chemical potentials.
    Fig. 7. Formation energy of defects at 0 K for different H chemical potentials.
    Equilibrium concentration of defects for different temperature and H chemical potentials: (a) Equilibrium concentration of vacancies; (b) equilibrium concentration of H occupying in vacancies; (c) equilibrium concentration of H occupying in interstitial positions.
    Fig. 8. Equilibrium concentration of defects for different temperature and H chemical potentials: (a) Equilibrium concentration of vacancies; (b) equilibrium concentration of H occupying in vacancies; (c) equilibrium concentration of H occupying in interstitial positions.
    Equilibrium total concentration of H of α-Fe containing vacancies.
    Fig. 9. Equilibrium total concentration of H of α-Fe containing vacancies.
    Schematic diagram of Devnathan-Stachurski double electrolytic cell.
    Fig. 10. Schematic diagram of Devnathan-Stachurski double electrolytic cell.
    晶体类型abcα/(°) β/(°) γ/(°) V空间群
    α-Fe+H(T-site)5.68435.66125.680489.99989.99990.0005.6843115(P-4m2)
    α-Fe+H(O-site)5.80195.61125.611290.00090.00090.0005.8019123(P4/mmm)
    Table 1. [in Chinese]
    晶体类型${E_{{\rm{crystal}}}}$/eV ${E_{{\rm{ZP}}}}$/eV ${E_{{\rm{bind}}}}$/eV $E_{{\rm{form}}}$/eV $\Delta H_{{ {\rm{sol} } } }^{\rm{H} }$/eV
    α-Fe+H(T-site)–13861.0500.2465.1820.3900.390
    α-Fe–13845.3445.530
    Table 2. [in Chinese]
    晶体类型原子轨道电荷占据数总布居净布居
    spd
    α-Fe-H(T-site)H1.34001.34–0.34
    Fe2, Fe40.620.666.657.930.07
    Fe3, Fe110.620.676.657.940.06
    Fe12, Fe100.650.726.627.990.01
    Fe1, Fe9, Fe13, Fe14, Fe160.650.726.627.990.01
    Fe8, Fe60.650.746.618.01–0.01
    α-FeFe0.680.706.628.000
    自由态H1.00001.000
    Table 3. [in Chinese]
    晶体类型原子对距离/Å键布居
    α-Fe-H (T-site)Fe2-H1.64940.16
    Fe3-H1.65070.16
    Fe2-Fe32.5558–0.09
    Fe2-Fe42.7286–0.14
    Fe8-Fe112.47830.17
    Fe3-Fe122.44710.18
    Fe8-Fe162.84010.05
    Fe7-Fe82.46010.15
    α-Fe-H (O-site)Fe2-Fe42.6287–0.28
    α-FeFe-Fe2.44000.14
    Fe-Fe2.81740.06
    Table 4. [in Chinese]
    晶体类型abcα/(°) β/(°) γ/(°) V空间群
    α-Fe+Vac 5.60335.60335.603390.00090.00090.000175.923221 ${\rm{(}}Pm\overline {{\rm{3}}m} )$
    α-Fe+(Vac-1H) 5.63215.61035.610390.00090.00189.999177.27099 ${\rm{(}}P{\rm{4}}MM)$
    α-Fe+(Vac-2H) 5.62855.62855.648490.00090.00090.000178.940123(P4/MMM)
    α-Fe+(Vac-3H) 5.62975.65985.685390.00490.01190.002181.15425(PMM2)
    α-Fe+(Vac-4H) 5.67275.69435.672389.96690.54089.973183.22138(AMM2)
    α-Fe+(Vac-5H) 5.69055.70865.709390.00090.00490.002185.46799 ${\rm{(}}P{\rm{4}}MM)$
    α-Fe+(Vac-6H) 5.74075.72705.720889.43389.69189.692188.0645(C2)
    Table 5.

    Lattice parameters and crystalline structure of α-Fe+(nH-Vac).

    α-Fe+(nH-Vac)的晶格常数和晶体结构

    晶体类型${E_{{\rm{crystal}}}}$/eV ${E_{{\rm{ZP}}}}$/eV ${E_{{\rm{bind}}}}$/eV $E_{{\rm{form}}}$/eV $\Delta H_{_{ {\rm{sol} } } }^{\rm{H} }$/eV
    α–Fe+Vac –12977.5935.3692.416
    α–Fe+(Vac-1H) –12993.9330.1415.0551.928–0.347
    α–Fe+(Vac-2H) –13010.2620.2954.7771.450–0.324
    α–Fe+(Vac-3H) –13026.3300.4784.5131.234–0.034
    α–Fe+(Vac-4H) –13042.3590.6704.2751.0560.014
    α–Fe+(Vac-5H) –13058.2990.8894.0550.9680.131
    α–Fe+(Vac-6H) –13073.9951.1493.8421.1230.438
    Table 6.

    Binding energy, formation energy, and heat of solution of α-Fe+(nH-Vac).

    α-Fe+(nH-Vac)的结合能、形成能和溶解热

    晶体类型$E_{{\rm{trap}}}^{\rm{H}}$/eV
    不考虑 ${E_{{\rm{ZP}}}}$考虑 ${E_{{\rm{ZP}}}}$
    α-Fe+(Vac-1H) 0.6330.778
    α-Fe+(Vac-2H) 0.6230.627
    α-Fe+(Vac-3H) 0.3610.211
    α-Fe+(Vac-4H) 0.322–0.011
    α-Fe+(Vac-5H) 0.227–0.297
    α-Fe+(Vac-6H) –0.028–0.772
    Table 7.

    Hydrogen trapping energy of α-Fe+(nH-Vac)

    α-Fe+(nH-Vac)对H原子的陷阱能

    晶体类型原子轨道电荷占据数总布居净布居
    spd
    α-Fe+Vac Fe7, Fe11, Fe130.740.726.688.13–0.13
    Fe3, Fe5, Fe90.680.736.638.04–0.04
    其余Fe原子0.660.676.607.930.07
    α-Fe+(Vac-2H) Fe130.710.716.738.15–0.15
    Fe90.660.706.627.980.02
    Fe110.710.716.658.07–0.07
    α-Fe+Vac—α-Fe+(Vac-6H) H11.20—1.22001.20—1.22–0.20— –0.22
    自由态H1.00001.000
    Table 8.

    Atomic orbital population of α-Fe+(nH-Vac).

    α-Fe+(nH-Vac)晶体原子轨道布居

    晶体类型${E_{{\rm{crystal}}}}$/eV ${E_{{\rm{ZP}}}}$/eV ${E_{{\rm{bind}}}}$/eV $E_{{\rm{form}}}$/eV $\Delta H_{{ {\rm{sol} } } }^{\rm{H} }$/eV
    α–Fe+Vac+H(T-site) –12993.354 — –12993.3530.248—0.2505.0122.755—2.7560.339—0.340
    Table 9.

    Binding energy, formation energy, and heat of solution of α-Fe+Vac+H(T-site).

    α-Fe+Vac+H(T-site)的结合能、形成能和溶解热

    温度/KμH/eV cH/%
    计算值实验值
    298.15–0.2392.08 × 10–24.41 × 10–22.88 × 10–2, 其中晶格溶H占总扩散H含量的43%[2]
    Table 10.

    Calculated and test value of equilibrium concentration of H atom.

    H平衡溶解度计算值和实验值

    Ying-Jin Cheng, Chao-Fei Yang, Gang Xue, Tao Wang, Lei Zhang, Mei-E Li. Investigation of interaction between α-Fe metal and H atom by ab-initio method [J]. Acta Physica Sinica, 2020, 69(5): 053101-1
    Download Citation