• Laser & Optoelectronics Progress
  • Vol. 51, Issue 11, 112701 (2014)
Dong Chen1、2、*, Zhao Shanghong1, Dong Yi1, Zhao Guhao1, and Zhao Jing1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3788/lop51.112701 Cite this Article Set citation alerts
    Dong Chen, Zhao Shanghong, Dong Yi, Zhao Guhao, Zhao Jing. Analysis of Quantum Key Distribution Protocols in Hybrid Quantum-Classical Optical Network[J]. Laser & Optoelectronics Progress, 2014, 51(11): 112701 Copy Citation Text show less
    References

    [1] Bennet C H, Brassard G. Quantum cryptography: public key distribution and coin tossing [C]. IEEE International Conference Computers, Ystems, and Signal Processing Bangalore, India. 1984. 175-179.

    [2] Shor P W, Preskill J. Simple proof of security of the BB84 quantum key distribution protocol [J]. Phys Rev Lett, 2000, 85(12): 441-444.

    [3] Mayers D. Unconditionally secure quantum bit commitment is impossible [J]. Phys Rev Lett, 1997, 78(17): 3414-3417.

    [4] Gottesman D, Lo H K, Lutkenhaus N, et al.. Security of quantum key distribution with imperfect devices [J].Quantum Information Computation, 2004, 4(5): 325-360.

    [5] Zhao Guhao, Zhao Shanghong, Yao Zhoushi, et al.. Effect of the pulse broadening caused by atmosphere on satellite based quantum key distribution [J]. Acta Optica Sinica , 2012, 32(11): 1127001.

    [6] Lu Daoming. Quantum properties in the system of atoms interacting with weak coherent cavities fields [J]. Acta Optica Sinica, 2012, 32(10): 1027001.

    [7] Lu Daoming, Qiu Changdong. Entanglement properties in the system of atom interacting with two-mode cavity [J]. Acta Optica Sinica, 2013, 33(12): 1227003.

    [8] Wang Fei, Xiao Ming. Output sideband quantum correlation with nonadiabatic elimination [J]. Acta Optica Sinica, 2012, 32(12): 1227001.

    [9] Guo Xueshi, Gao Kang, Liu Nannan, et al.. Differential detection system for measureing the quantum noise of pulsed light [J]. Acta Optica Sinica, 2012, 33(9): 0927002.

    [10] Brassard G, Lutkenhaus N, Mor T, et al.. Limitations on practical quantum cryptography [J]. Phys Rev Lett, 2000, 85(6): 1330-1333.

    [11] Bennet t C H, Brassard G, Mermin N D. Quantum cryptography without Bell′s theorem [J]. Phys Rev Lett, 1992, 68(5): 557-559.

    [12] Lo H K, Curty M, Qi B. Measurement device independent quantum key distribution [J]. Phys Rev Lett, 2012, 108(13): 130503.

    [13] Lo H K, MA X F, Chen K. Decoy state quantum key distribution [J]. Phys Rev Lett, 2005, 94(23): 230504.

    [14] Ma X F, Fung C H F, Razavi M. Statistical fluctuation analysis for measurement device independent quantum key distribution [J]. Phys Rev A, 2012, 86(5): 052305.

    [15] Ma X F, Razavi M. Alternative schemes for measurement device independent quantum key distribution [J]. Phys Rev A, 2012, 86(6): 062319.

    [16] Elliot C. Building the quantum network [J]. New Journal of Physics. 2002, 4(1): 46.

    [17] Townsend P D. Quantum cryptography on multiuser optical fiber networks [J]. Nature, 1997, 385(6611): 47-49.

    [18] Duan L M, Lukin M D, Cirac J I, et al.. Long distance quantum communication with atomic ensembles [J]. Nature, 2001, 414(6862): 413-418.

    [19] Qi B, Zhu W, Qian L, Lo H K. Feasibility of quantum key distribution through a dense wavelength division multiplexing network [J]. New Journal of Physics, 2010, 12(10): 103042.

    [20] Panayi C, Razavi M, Ma X F, et al.. Memory-assisted measurement-device-independent quantum key distribution [J]. New Journal of Physics, 2014, 16(4): 043005.

    CLP Journals

    [1] Jiao Haisong, Wang Yanbo, He Min, Zhu Yong, Zhang Zhiyong. Research about Effect of Phase Drift on Phase-Coding QKD System and Intercept-Resend Attack[J]. Laser & Optoelectronics Progress, 2015, 52(4): 42703

    Dong Chen, Zhao Shanghong, Dong Yi, Zhao Guhao, Zhao Jing. Analysis of Quantum Key Distribution Protocols in Hybrid Quantum-Classical Optical Network[J]. Laser & Optoelectronics Progress, 2014, 51(11): 112701
    Download Citation