• Chinese Optics Letters
  • Vol. 19, Issue 1, 011301 (2021)
Lifeng Ma1, Jing Li1, Zhouhui Liu1, Yuxuan Zhang1, Nianen Zhang1, Shuqiao Zheng1, and Cuicui Lu1、2、*
Author Affiliations
  • 1Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurements of Ministry of Education, Beijing Key Laboratory of Nanophotonics and Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, Beijing 100081, China
  • 2Collaborative Innovation Center of Light Manipulations and Applications, Shandong Normal University, Jinan 250358, China
  • show less
    DOI: 10.3788/COL202119.011301 Cite this Article Set citation alerts
    Lifeng Ma, Jing Li, Zhouhui Liu, Yuxuan Zhang, Nianen Zhang, Shuqiao Zheng, Cuicui Lu. Intelligent algorithms: new avenues for designing nanophotonic devices [Invited][J]. Chinese Optics Letters, 2021, 19(1): 011301 Copy Citation Text show less
    References

    [1] Y. Chen, Y. Cheng, R. Zhu, F. Wang, H. Cheng, Z. Liu, C. Fan, Y. Xue, Z. Yu, J. Zhu, X. Hu, Q. Gong. Nanoscale all-optical logic devices. Sci. Chin. Phys. Mech., 62, 44201(2019).

    [2] K. Yao, R. Unni, Y. Zheng. Intelligent nanophotonics: merging photonics and artificial intelligence at the nanoscale. Nanophotonics, 8, 339(2019).

    [3] S. Molesky, Z. Lin, A. Y. Piggott, W. Jin, J. Vucković, A. W. Rodriguez. Inverse design in nanophotonics. Nat. Photonics, 12, 659(2018).

    [4] N. Palumbo. 525.770 – Intelligent algorithms.

    [5] M. S. Kumar, S. Menabde, S. Yu, N. Park. Directional emission from photonic crystal waveguide terminations using particle swarm optimization. J. Opt. Soc. Am. B, 27, 343(2010).

    [6] M. D. Huntington, L. J. Lauhon, T. W. Odom. Subwavelength lattice optics by evolutionary design. Nano Lett., 14, 7195(2014).

    [7] Z. Liu, X. Liu, Z. Xiao, C. Lu, H. Wang, Y. Wu, X. Hu, Y. Liu, H. Zhang, X. Zhang. Integrated nanophotonic wavelength router based on an intelligent algorithm. Optica, 6, 1367(2019).

    [8] C. Lu, Z. Liu, Y. Wu, Z. Xiao, D. Yu, H. Zhang, C. Wang, X. Hu, Y. C. Liu, X. Liu, X. Zhang. Nanophotonic polarization routers based on an intelligent algorithm. Adv. Opt. Mater., 8, 1902018(2020).

    [9] S. R. Granter, A. H. Beck, D. J. Papke. AlphaGo, deep learning, and the future of the human microscopist. Arch. Pathol. Lab. Med., 141, 619(2017).

    [10] G. E. Hinton, R. R. Salakhutdinov. Reducing the dimensionality of data with neural networks. Science., 313, 504(2006).

    [11] Y. LeCun, Y. Bengio, G. Hinton. Deep learning. Nature, 521, 436(2015).

    [12] A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, S. G. Johnson. Meep: a flexible free-software package for electromagnetic simulations by the FDTD method. Comput. Phys. Commun., 181, 687(2010).

    [13] I. Malkiel, M. Mrejen, A. Nagler, U. Arieli, L. Wolf, H. Suchowski. Plasmonic nanostructure design and characterization via deep learning. Light Sci. Appl., 7, 555(2018).

    [14] D. Liu, Y. Tan, E. Khoram, Z. Yu. Training deep neural networks for the inverse design of nanophotonic structures. ACS Photon., 5, 1365(2018).

    [15] L. Xu, M. Rahmani, Y. Ma, D. A. Smirnova, K. Z. Kamali, F. Deng, Y. K. Chiang, L. Huang, H. Zhang, S. Gould, D. N. Neshev, A. E. Miroshnichenkoa. Enhanced light-matter interactions in dielectric nanostructures via machine-learning approach. Adv. Photon., 2, 026003(2020).

    [16] M. H. Tahersima, K. Kojima, T. Koike-Akino, D. Jha, B. Wang, C. Lin, K. Parsons. Deep neural network inverse design of integrated photonic power splitters. Sci. Rep., 9, 1368(2019).

    [17] W. Ma, F. Cheng, Y. Liu. Deep-learning-enabled on-demand design of chiral metamaterials. ACS Nano., 12, 6326(2018).

    [18] B. Wu, K. Ding, C. T. Chan, Y. Chen. Machine prediction of topological transitions in photonic crystals(2017).

    [19] J. Zhao, Y. S. H. Zhu, Z. Zhu, J. E. Antonio-Lopez, R. A. Correa, S. Pang, A. Schulzgen. Deep-learning cell imaging through Anderson localizing optical fiber. Adv. Photon., 1, 066001(2019).

    [20] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, Y. Bengio. Generative adversarial nets, 1(2014).

    [21] J. Jiang, D. Sell, S. Hoyer, J. Hickey, J. Yang, J. A. Fan. Free-form diffractive metagrating design based on generative adversarial networks. ACS Nano., 13, 8872(2019).

    [22] W. Ma, F. Cheng, Y. Xu, Q. Wen, Y. Liu. Probabilistic representation and inverse design of metamaterials based on a deep generative model with semi‐supervised learning strategy. Adv. Mater., 31, 1901111(2019).

    [23] Y. Tang, K. Kojima, T. Koike-Akino, Y. Wang, P. Wu, M. TaherSima, D. Jha, K. Parsons, M. Qi. Generative deep learning model for a multi-level nano-optic broadband power splitter, Th1A.1(2020).

    [24] H. Zhou, Y. Zhao, G. Xu, X. Wang, Z. Tan, J. Dong, X. Zhang. Chip-scale optical matrix computation for PageRank algorithm. IEEE J. Sel. Top. Quant, 26, 8300910(2020).

    [25] H. Zhou, Y. Zhao, X. Wang, D. Gao, J. Dong, X. Zhang. Self-configuring and reconfigurable silicon photonic signal processor. ACS Photon., 7, 792(2020).

    [26] H. Zhou, Y. Zhao, Y. Wei, F. Li, J. Dong, X. Zhang. All-in-one silicon photonic polarization processor. Nanophotonics, 8, 2257(2019).

    [27] A. M. Hammond, R. M. Camacho. Designing integrated photonic devices using artificial neural networks. Opt. Express, 27, 29620(2019).

    [28] P. Baldi, P. Sadowski, D. Whiteson. Searching for exotic particles in high-energy physics with deep learning. Nat. Commun., 5, 4308(2014).

    [29] W. J. Brouwer, J. D. Kubicki, J. O. Sofo, C. L. Giles. An investigation of machine learning methods applied to structure prediction in condensed matter(2014).

    [30] M. Rupp, A. Tkatchenko, K. Müller, O. A. von Lilienfeld. Fast and accurate modeling of molecular atomization energies with machine learning. Phys. Rev. Lett., 108, 058301(2012).

    [31] S. Jiao, Z. Jin, C. Chang, C. Zhou, W. Zou, X. Li. Compression of phase-only holograms with JPEG standard and deep learning. Appl. Sci., 8, 1258(2019).

    [32] S. So, J. Mun, J. Rho. Simultaneous inverse design of materials and structures via deep learning: demonstration of dipole resonance engineering using core-shell nanoparticles. ACS Appl. Mater. Inter, 11, 24264(2019).

    [33] Y. Chen, J. Zhu, Y. Xie, N. Feng, Q. H. Liu. Smart inverse design of graphene-based photonic metamaterials by an adaptive artificial neural network. Nanoscale, 11, 9749(2019).

    [34] T. Zhang, J. Wang, Q. Liu, J. Zhou, J. Dai, X. Han, Y. Zhou, K. Xu. Efficient spectrum prediction and inverse design for plasmonic waveguide systems based on artificial neural networks. Photon. Res., 7, 368(2019).

    [35] Z. Liu, D. Zhu, S. P. Rodrigues, K. Lee, W. Cai. Generative model for the inverse design of metasurfaces. Nano Lett., 18, 6570(2018).

    [36] J. Peurifoy, Y. Shen, L. Jing, Y. Yang, F. Cano-Renteria, B. G. DeLacy, J. D. Joannopoulos, M. Tegmark, M. Soljacic. Nanophotonic particle simulation and inverse design using artificial neural networks. Sci. Adv., 4, eaar4206(2018).

    [37] P. R. Wiecha, O. L. Muskens. Deep learning meets nanophotonics: a generalized accurate predictor for near fields and far fields of arbitrary 3D nanostructures. Nano Lett., 20, 329(2019).

    [38] H. Ren, W. Shao, Y. Li, F. Salim, M. Gu. Three-dimensional vectorial holography based on machine learning inverse design. Sci. Adv., 6, eaaz4261(2020).

    [39] W. Ma, Y. Liu. A data-efficient self-supervised deep learning model for design and characterization of nanophotonic structures. Sci. China Phys. Mech. Astron., 63, 284212(2020).

    [40] Z. Liu, D. Zhu, K. Lee, A. S. Kim, L. Raju, W. Cai. Compounding meta-atoms into meta-molecules with hybrid artificial intelligence techniques. Adv. Mater., 32, 1904790(2019).

    [41] O. Hemmatyar, S. Abdollahramezani, Y. Kiarashinejad, M. Zandehshahvar, A. Adibi. Full color generation with Fano-type resonant HfO2 nanopillars designed by a deep-learning approach. Nanoscale, 11, 21266(2019).

    [42] S. So, T. Badloe, J. Noh, J. Bravo-Abad, J. Rho. Deep learning with coherent nanophotonic circuits. Nanophotonics, 9, 1041(2020).

    [43] Y. Shen, N. C. Harris, S. Skirlo, M. Prabhu, T. Baehr-Jones, M. Hochberg, X. Sun, S. Zhao, H. Larochelle, D. Englund, M. Soljačić. Deep learning enabled inverse design in nanophotonics. Nat. Photon., 11, 441(2017).

    [44] J. Feldmann, N. Youngblood, C. D. Wright, H. Bhaskaran, W. H. P. Pernice. All-optical spiking neurosynaptic networks with self-learning capabilities. Nature, 569, 208(2019).

    [45] M. Veli, Y. Luo, A. Ozcan, M. Jarrahi, Y. Rivenson, N. T. Yardimei, X. Lin. All-optical machine learning using diffractive deep neural networks. Science, 361, 1004(2018).

    [46] S. Jiao, J. Feng, Y. Gao, T. Lei, Z. Xie, X. Yuan. Optical machine learning with incoherent light and a single-pixel detector. Opt. Lett., 44, 5186(2019).

    [47] E. Khoram, A. Chen, D. Liu, L. Ying, Q. Wang, M. Yuan, Z. Yu. Nanophotonic media for artificial neural inference. Opt. Lett., 7, 823(2019).

    [48] J. Chang, V. Sitzmann, X. Dun, W. Heidrich, G. Wetzstein. Hybrid optical-electronic convolutional neural networks with optimized diffractive optics for image classification. Sci. Rep., 8, 12324(2018).

    [49] J. Jiang, J. A. Fan. Global optimization of dielectric metasurfaces using a physics-driven neural network. Nano Lett., 19, 5366(2019).

    [50] I. Sajedian, J. Kim, J. Rho. Finding the optical properties of plasmonic structures by image processing using a combination of convolutional neural networks and recurrent neural networks. Microsyst. Nanoeng., 5, 27(2019).

    [51] Y. Qu, L. Jing, Y. Shen, M. Qiu, M. Soljačić. Basic instincts. ACS Photon., 6, 1168(2019).

    [52] M. Hutson. Migrating knowledge between physical scenarios based on artificial neural networks. Science., 360, 845(2018).

    [53] S. Jiao, Y. Gao, J. Feng, T. Lei, X. Yuan. Does deep learning always outperform simple linear regression in optical imaging?. Opt. Express, 28, 3717(2020).

    [54] E. Goi, Q. Zhang, X. Chen, H. Luan, M. Gu. Perspective on photonic memristive neuromorphic computing. PhotoniX, 1, 3(2020).

    [55] T. Chen, J. van Gelder, B. van de Ven, S. V. Amitonov, B. de Wilde, H. Ruiz Euler, H. Broersma, P. A. Bobbert, F. A. Zwanenburg, W. G. van der Wiel. Classification with a disordered dopant-atom network in silicon. Nature, 577, 341(2020).

    [56] Y. Kiarashinejad, S. Abdollahramezani, A. Adibi. Deep learning approach based on dimensionality reduction for designing electromagnetic nanostructures. NPJ Comput. Mater., 6, 12(2020).

    [57] T. Han, C. Liu, W. Yang, D. Jiang. Deep transfer network with joint distribution adaptation: a new intelligent fault diagnosis framework for industry application. ISA Trans., 97, 269(2020).

    [58] M. Wang, W. Deng. Deep visual domain adaptation: a survey. Neurocomputing, 312, 135(2018).

    [59] K. Chadan, P. C. Sabatier, R. G. Newton. Inverse Problems in Quantum Scattering Theory(1988).

    [60] A. Y. Piggott, J. Petykiewicz, L. Su, J. Vučković. Fabrication-constrained nanophotonic inverse design. Sci. Rep., 7, 1786(2017).

    [61] C. Dory, D. Vercruysse, K. Y. Yang, N. V. Sapra, A. E. Rugar, S. Sun, D. M. Lukin, A. Y. Piggott, J. L. Zhang, M. Radulaski, K. G. Lagoudakis, L. Su, J. Vučković. Inverse-designed diamond photonics. Nat. Commun., 10, 3309(2019).

    [62] J. Lu, J. Vučković. Nanophotonic computational design. Opt. Express, 21, 13351(2013).

    [63] N. V. Sapra, D. Vercruysse, L. Su, K. Y. Yang, J. Skarda, A. Y. Piggott, J. Vuckovic. Inverse design and demonstration of broadband grating couplers. IEEE J. Sel. Top. Quantum., 25, 6100207(2019).

    [64] A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, J. Vučković. Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer. Nat. Photon., 9, 374(2015).

    [65] L. Su, A. Y. Piggott, N. V. Sapra, J. Petykiewicz, J. Vučković. Inverse design and demonstration of a compact on-chip narrowband three-channel wavelength demultiplexer. ACS Photon., 5, 301(2017).

    [66] N. V. Sapra, K. Y. Yang, D. Vercruysse, K. J. Leedle, D. S. Black, R. J. England, L. Su, R. Trivedi, Y. Miao, O. Solgaard, R. L. Byer, J. Vučković. On-chip integrated laser-driven particle accelerator. Science, 367, 79(2020).

    [67] K. Y. Yang, J. Skarda, M. Cotrufo, A. Dutt, G. H. Ahn, M. Sawaby, D. Vercruysse, A. Arbabian, S. Fan, A. Alù, J. Vučković. Inverse-designed non-reciprocal pulse router for chip-based LiDAR. Nat. Photon., 14, 369(2020).

    [68] P. Camayd-Muñoz, G. Roberts, C. Ballew, M. Debbas, A. Faraon. Inverse designed shape-reconfigurable multifunctional photonics, FW3B.2(2020).

    [69] J.-K. Byun, J.-H. Ko, H.-B. Lee, J.-S. Park, H.-S. Kim. Application of the sensitivity analysis to the optimal design of the microstrip low-pass filter with defected ground structure. IEEE Trans. Mag., 45, 1462(2009).

    [70] J. Lehtinen. A framework for precomputed and captured light transport. ACM Trans. Graphics, 26, 13(2007).

    [71] J. C. Finlay, T. H. Foster. Recovery of hemoglobin oxygen saturation and intrinsic fluorescence with a forward-adjoint model. Appl. Opt., 44, 1917(2005).

    [72] S. Forest. Genetic algorithms-principles of natural-selection applied to computation. Science, 261, 872(1993).

    [73] G. Pu, L. Yi, L. Zhang, W. Hu. Intelligent programmable mode-locked fiber laser with a human-like algorithm. Optica, 6, 362(2019).

    [74] Z. Yu, H. Cui, X. Sun. Genetic-algorithm-optimized wideband on-chip polarization rotator with an ultrasmall footprint. Opt. Lett., 42, 3093(2017).

    [75] A. C. S. Chan, A. K. S. Lau, K. K. Y. Wong, E. Y. Lam, K. K. Tsia. Arbitrary two-dimensional spectrally encoded pattern generation—a new strategy for high-speed patterned illumination imaging. Optica, 2, 1037(2015).

    [76] D. J. Poxson, M. F. Schubert, F. W. Mont, E. F. Schubert, J. K. Kim. Broadband omnidirectional antireflection coatings optimized by genetic algorithm. Opt. Lett., 34, 728(2009).

    [77] Z. Yu, H. Ccui, X. Sun. Optimal design of integrally gated CNT field-emission devices using a genetic algorithm. Photon. Res., 5, B15(2017).

    [78] L. Sanchis, A. Håkansson, D. López-Zanón, J. Bravo-Abad, J. Sánchez-Dehesa. Genetically optimized on-chip wideband ultracompact reflectors and Fabry–Perot cavities. Appl. Phys. Lett., 84, 4460(2004).

    [79] P. Y. Chen, C. H. Chen, J. S. Wu, H. C. Wen, W. P. Wang. Integrated optical devices design by genetic algorithm. Nanotechnology, 18, 395203(2007).

    [80] M. Liu, Y. Xie, T. Feng, Y. Xu. Resonant broadband unidirectional light scattering based on genetic algorithm. Opt. Lett., 45, 968(2020).

    [81] K. Liao, T. Gan, X. Hu, Q. Gong. AI-assisted on-chip nanophotonic convolver based on silicon metasurface. Nanophotonics, 9, 3315(2020).

    [82] Z. Lin, X. Li, R. Zhao, X. Song, Y. Wang, L. Huang. High-efficiency Bessel beam array generation by Huygens metasurfaces. Nanophotonics, 8, 1079(2019).

    [83] Y. Khorrami, D. Fathi, R. C. Rumpf. Fast optimal design of optical components using the cultural algorithm. Opt. Express, 28, 15954(2020).

    [84] N. Padhye. Topology optimization of compliant mechanism using multi-objective particle swarm optimization, 1831(2008).

    [85] J. F. Schutte, J. A. Reinbolt, B. J. Fregly, R. T. Haftka, A. D. George. Parallel global optimization with the particle swarm algorithm. Int. J. Numer. Meth. Eng., 61, 2296(2004).

    [86] M. Djavid, S. A. Mirtaheri, M. S. Abrishamian. Photonic crystal notch-filter design using particle swarm optimization theory and finite-difference time-domain analysis. J. Opt. Soc. Am. B, 26, 849(2009).

    [87] C. Forestiere, M. Donelli, G. F. Walsh, E. Zeni, G. Miano, L. Dal Negro. Particle-swarm optimization of broadband nanoplasmonic arrays. Opt. Lett., 35, 133(2010).

    [88] E. T. F. Rogers, J. Lindberg, T. Roy, S. Savo, J. E. Chad, M. R. Dennis, N. I. Zheludev. A super-oscillatory lens optical microscope for subwavelength imaging. Nat. Mater., 11, 432(2012).

    [89] M. Passoni, D. Gerace, L. Carroll, L. C. Andreani. Grating couplers in silicon-on-insulator: the role of photonic guided resonances on lineshape and bandwidth. Appl. Phys. Lett., 110, 41107(2017).

    [90] J. C. C. Mak, C. Sideris, J. Jeong, A. Hajimiri, J. K. S. Poon. Binary particle swarm optimized 2 × 2 power splitters in a standard foundry silicon photonic platform. Opt. Lett., 41, 3868(2016).

    [91] Y. Ha, Y. Guo, M. Pu, F. Zhang, X. Li, X. Ma, M. Xu, X. Luo. Minimized two- and four-step varifocal lens based on silicon photonic integrated nanoapertures. Opt. Express, 28, 7943(2020).

    [92] B. Wohlfeil, L. Zimmermann, K. Petermann. Optimization of fiber grating couplers on SOI using advanced search algorithms. Opt. Lett., 39, 3201(2014).

    [93] N. Zhu, H. J. Sun, N. F. Zhou. Ant colony optimization for dynamic RWA in WDM networks with partial wavelength conversion. Photon. Network Commun., 11, 229(2006).

    [94] I. Saouane, A. Chaker, B. Zaidi, C. Shekhar. Optimal angle of polycrystalline silicon solar panels placed in a building using the ant colony optimization algorithm. Eur. Phys. J. Plus., 132, 106(2017).

    [95] X. Guo, H. Y. Zhou, S. Guo, X. X. Luan, W. K. Cui, Y. F. Ma, L. Shi. Design of broadband omnidirectional antireflection coatings using ant colony algorithm. Opt. Express, 22, A1137(2014).

    [96] M. Lundy. Convergence of an annealing algorithm. Math. Programm., 34, 111(1986).

    [97] M. Čepin. Assessment of Power System Reliability(2011).

    [98] A. Basu, L. N. Fraze. Rapid determination of the critical temperature in simulated annealing inversion. Science, 249, 1409(1990).

    [99] K. Hara, T. Iwamoto, K. Kyuma. Optimum design technique for optoelectronic devices using simulated annealing. Electron. Commun. Japan, 79, 22(1996).

    [100] L. D. Khalaf, A. F. Peterson. Performance of the simulated annealing and genetic algorithms for the design of periodic devices. Int. J. Microwave Millimeter-Wave Comput. Aided Eng., 7, 108(1997).

    [101] Y. T. Lu, Y. Q. Zhou. Design of multilayer microwave absorbers using hybrid binary lightning search algorithm and simulated annealing. Photon. Network Commun., 78, 75(2017).

    [102] Z. Xie, T. Lei, F. Li, H. Qiu, Z. Zhang, H. Wang, C. Min, L. Du, Z. Li, X. Yuan. Ultra-broadband on-chip twisted light emitter for optical communications. Light: Sci. Appl., 7, 18001(2018).

    [103] Z. Xie, T. Lei, H. Qiu, Z. Zhang, H. Wang, X. Yuan. Broadband on-chip photonic spin Hall element via inverse design. Photon. Res., 8, 121(2020).

    [104] S. J. Russell, P. Norvig. Artificial Intelligence: A Modern Approach(2003).

    [105] T. Lin, F. Tian, P. Shi, F. S. Chau, G. Zhou, X. Tang, J. Deng. Design of mechanically-tunable photonic crystal split-beam nanocavity. Opt. Lett., 40, 3504(2015).

    [106] Q. Quan, P. B. Deotare, M. Loncar. Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide. Appl. Phys. Lett., 96, 203102(2010).

    [107] E. Tabli. Metaheuristics: From Design to Implementation(2009).

    [108] H. Youssef, S. M. Sait, H. Adiche. Evolutionary algorithms, simulated annealing and tabu search: a comparative study. Eng. Appl. Artif. Intel., 14, 167(2001).

    [109] D. Gagnon, J. Dumont, L. J. Dubé. Multiobjective optimization in integrated photonics design. Opt. Lett., 38, 2181(2013).

    [110] D. Gagnon, J. Dumont, J. Déziel, L. J. Dubé. Optimization of integrated polarization filters. Opt. Lett., 39, 5768(2014).

    [111] M. A. Seldowitz, J. P. Allebach, D. W. Sweeney. Synthesis of digital holograms by direct binary search. Appl. Opt., 26, 2788(1987).

    [112] B. B. Chhetri, S. Yang, T. Shimomura. Stochastic approach in the efficient design of the direct-binary-search algorithm for hologram synthesis. Appl. Opt., 39, 5956(2000).

    [113] B. Shen, P. Wang, R. Polson, R. Menon. An integrated-nanophotonics polarization beamsplitter with 2.4 × 2.4 µm2 footprint. Nat. Photon., 9, 378(2015).

    [114] B. Shen, P. Wang, R. Menon. Optimization and analysis of 3D nanostructures for power-density enhancement in ultra-thin photovoltaics under oblique illumination. Opt. Express, 22, A311(2014).

    [115] B. Shen, P. Wang, R. Polson, R. Menon. Ultra-high-efficiency metamaterial polarizer. Optica, 1, 356(2014).

    [116] P. Wang, R. Menon. Optimization of periodic nanostructures for enhanced light-trapping in ultra-thin photovoltaics. Opt. Express, 21, 6274(2013).

    [117] G. Kim, J. A. Dominguez-Caballero, R. Menon. Design and analysis of multi-wavelength diffractive optics. Opt. Express, 20, 2814(2012).

    [118] G. Kim, J. A. Dominguez-Caballero, H. Lee, D. J. Friedman, R. Menon. Increased photovoltaic power output via diffractive spectrum separation. Phys. Rev. Lett., 110, 123901(2013).

    [119] T. R. Sales, D. H. Raguin. Multiwavelength operation with thin diffractive elements. Appl. Opt., 38, 3012(1999).

    [120] B. Shen, P. Wang, R. Polson, R. Menon. Integrated metamaterials for efficient and compact free-space-to-waveguide coupling. Opt. Express, 22, 27175(2014).

    [121] G. Kim, R. Menon. An ultra-small three dimensional computational microscope. Appl. Phys. Lett., 105, 061114(2014).

    [122] Y. Liu, S. Wang, Y. Wang, W. Liu. Subwavelength polarization splitter–rotator with ultra-compact footprint. Opt. Lett., 44, 4495(2019).

    [123] A. Majumder, B. Shen, R. Polson, T. Andrew, R. Menon. An ultra-compact nanophotonic optical modulator using multi-state topological optimization(2017).

    [124] B. Shen, R. Polson, R. Menon. Increasing the density of passive photonic-integrated circuits via nanophotonic cloaking. Nat. Commun., 7, 13126(2016).

    [125] H. Xie, Y. Liu, S. Wang, Y. Wang, Y. Yao, Q. Song, J. Du, Z. He, K. Xu. Highly compact and efficient four-mode multiplexer based on pixelated waveguides. IEEE Photon. Tech. Lett., 32, 166(2020).

    [126] Y. Liu, K. Xu, S. Wang, W. Shen, H. Xie, Y. Wang, S. Xiao, Y. Yao, J. Du, Z. He, Q. Song. Arbitrarily routed mode-division multiplexed photonic circuits for dense integration. Nat. Commun., 10, 3263(2019).

    [127] Y. Liu, W. Sun, H. Xie, N. Zhang, K. Xu, Y. Yao, S. Xiao, Q. Song. Very sharp adiabatic bends based on an inverse design. Opt. Lett., 43, 2482(2018).

    [128] H. Xie, Y. Liu, Y. Wang, Y. Wang, Y. Yao, Q. Song, J. Du, Z. He, K. Xu. An ultra-compact 3-dB power splitter for three modes based on pixelated meta-structure. IEEE Photon. Tech. Lett., 32, 341(2020).

    [129] H. Ma, J. Huang, K. Zhang, J. Yang. Arbitrary-direction, multichannel and ultra-compact power splitters by inverse design method. Opt. Commun., 462, 125329(2020).

    [130] Y. Deng, Z. Liu, C. Song, P. Hao, Y. Wu, Y. Liu, J. G. Korvink. Topology optimization of metal nanostructures for localized surface plasmon resonances. Struct. Multidiscip. Optim., 53, 967(2016).

    [131] J. Huang, J. Yang, D. Chen, W. Bai, J. Han, Z. Zhang, J. Zhang, X. He, Y. Han, L. Liang. Implementation of on-chip multi-channel focusing wavelength demultiplexer with regularized digital metamaterials. Nanophotonics, 9, 159(2020).

    [132] Y. Chen, Y. Hu, J. Zhao, Y. Deng, Z. Wang, X. Cheng, D. Lei, Y. Deng, H. Duan. Topology optimization‐based inverse design of plasmonic nanodimer with maximum near‐field enhancement. Adv. Funct. Mater., 30, 2000642(2020).

    [133] C. Y. Kao, S. Osher, E. Yablonovitch. Maximizing band gaps in two-dimensional photonic crystals by using level set methods. Appl. Phys. B, 81, 235(2005).

    [134] S. Osher, J. A. Sethian. Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys., 79, 12(1988).

    [135] F. Stanley, J. Osher. Level set methods for optimization problems involving geometry and constraints. J. Comput. Phys., 171, 1(2001).

    [136] A. K. S. Heinrich, H. Niederreiter. Monte Carlo and Quasi-Monte Carlo Methods(2006).

    [137] K. Binder. Applications of the Monte Carlo method in Statistical Physics(1987).

    [138] R. Y. Rubinstein, D. P. Kroese. Simulation and the Monte Carlo Method(2008).

    [139] Y. Zhao, X. Cao, J. Gao, Y. Sun, H. Yang, X. Liu, Y. Zhou, T. Han, W. Chen. Broadband diffusion metasurface based on a single anisotropic element and optimized by the Simulated Annealing algorithm. Sci. Rep., 6, 23896(2016).

    [140] L. Baranyai. Laser induced diffuse reflectance imaging – Monte Carlo simulation of backscattering measured on the surface. MethodsX, 7, 100958(2020).

    Data from CrossRef

    [1] Ning Wang, Wei Yan, Yurui Qu, Siqi Ma, Stan Z. Li, Min Qiu. Intelligent designs in nanophotonics: from optimization towards inverse creation. PhotoniX, 2, 22(2021).

    Lifeng Ma, Jing Li, Zhouhui Liu, Yuxuan Zhang, Nianen Zhang, Shuqiao Zheng, Cuicui Lu. Intelligent algorithms: new avenues for designing nanophotonic devices [Invited][J]. Chinese Optics Letters, 2021, 19(1): 011301
    Download Citation