• Photonics Research
  • Vol. 8, Issue 3, 257 (2020)
Jinman Lv1, Binbin Hong1, Yang Tan2, Feng Chen2, Javier Rodríguez Vázquez de Aldana3, and Guo Ping Wang1、*
Author Affiliations
  • 1Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518052, China
  • 2School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
  • 3Departamento Física Aplicada, Facultad Ciencias, Universidad de Salamanca, Salamanca 37008, Spain
  • show less
    DOI: 10.1364/PRJ.380215 Cite this Article Set citation alerts
    Jinman Lv, Binbin Hong, Yang Tan, Feng Chen, Javier Rodríguez Vázquez de Aldana, Guo Ping Wang. Mid-infrared waveguiding in three-dimensional microstructured optical waveguides fabricated by femtosecond-laser writing and phosphoric acid etching[J]. Photonics Research, 2020, 8(3): 257 Copy Citation Text show less
    References

    [1] G. C. Righini, A. Chiappini. Glass optical waveguides: a review of fabrication techniques. Opt. Eng., 53, 071819(2014).

    [2] F. Qiu, A. M. Spring, F. Yu, I. Aoki, A. Otomo, S. Yokoyama. Thin TiO2 core and electro-optic polymer cladding waveguide modulators. Appl. Phys. Lett., 102, 233504(2013).

    [3] I. T. Sorokina, B. Jean, K. L. Vodopyanov, T. Bende. Mid-IR laser applications in medicine. Solid-State Mid-Infrared Laser Sources, 511-546(2003).

    [4] S. Kameyama, M. Imaki, Y. Hirano, S. Ueno, S. Kawakami, D. Sakaizawa, M. Nakajima. Development of 1.6  μm continuous-wave modulation hard target differential absorption lidar system for CO2 sensing. Opt. Lett., 34, 1513-1515(2009).

    [5] U. Willer, M. Saraji, A. Khorsandi, P. Geiser, W. Schade. Near- and mid-infrared laser monitoring of industrial processes, environment and security applications. Opt. Lasers Eng., 44, 699-710(2006).

    [6] F. Chen. Photonic guiding structures in lithium niobate crystals produced by energetic ion beams. J. Appl. Phys., 106, 081101(2009).

    [7] W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, Y. H. Min. Integrated optical devices in lithium niobate. Opt. Photon. News, 19, 24-31(2008).

    [8] G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, R. Guzzi. Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3: planar optical waveguide formation and characterization. J. Appl. Phys., 92, 6477-6482(2002).

    [9] D. Kip. Photorefractive waveguides in oxide crystals: fabrication, properties, and applications. Appl. Phys. B, 67, 131-150(1998).

    [10] D. I. Shevtsov, I. S. Azanova, I. F. Taysin, I. E. Kalabin, A. Volynzev, V. Atuchin. Deformations in Ti diffused proton-exchanged X-cut LiNbO3 waveguide layers. Proc. SPIE, 6258, 62580D(2006).

    [11] D. Choudhury, J. R. Macdonald, A. K. Kar. Ultrafast laser inscription: perspectives on future integrated applications. Laser Photon. Rev., 8, 827-846(2014).

    [12] R. Airan, K. K. Ajoy. High-contrast step-index waveguides in borate nonlinear laser crystals by 3D laser writing. Opt. Express, 19, 17820-17833(2011).

    [13] R. R. Gattass, E. Mazur. Femtosecond laser micromachining in transparent materials. Nat. Photonics, 2, 219-225(2008).

    [14] F. Chen, J. R. Vazquez de Aldana. Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining. Laser Photon. Rev., 8, 251-275(2014).

    [15] M. Ams, G. D. Marshall, P. Dekker, J. A. Piper, M. J. Withford. Ultrafast laser written active devices. Laser Photon. Rev., 3, 535-544(2009).

    [16] Y. Bellouard, A. Said, P. Bado. Integrating optics and micro-mechanics in a single substrate: a step toward monolithic integration in fused silica. Opt. Express, 13, 6635-6644(2005).

    [17] C. Hnatovsky, R. S. Taylor, E. Simova, P. P. Rajeev, D. M. Rayner, V. R. Bhardwaj, P. B. Corkum. Fabrication of microchannels in glass using focused femtosecond laser radiation and selective chemical etching. Appl. Phys. A, 84, 47-61(2006).

    [18] A. Ródenas, M. Gu, G. Corrielli, P. Paiè, S. John, A. K. Kar, R. Osellame. Three-dimensional femtosecond laser nanolithography of crystals. Nat. Photonics, 13, 105-109(2019).

    [19] D. Choudhury, A. Rodenas, L. Paterson, F. Díaz, D. Jaque, A. K. Kar. Three-dimensional microstructuring of yttrium aluminum garnet crystals for laser active optofluidic applications. Appl. Phys. Lett., 103, 041101(2013).

    [20] X. Q. Liu, B. F. Bai, Q. D. Chen, H. B. Sun. Etching-assisted femtosecond laser modification of hard materials. Opto-Electron. Adv., 2, 190021(2019).

    [21] K. Hasse, G. Huber, C. Kränkel. Selective etching of fs-laser inscribed high aspect ratio microstructures in YAG. Opt. Mater. Express, 9, 3627-3637(2019).

    [22] S. W. Luo, H. Y. Tsai. Fabrication of 3D photonic structure on glass materials by femtosecond laser modification with HF etching process. J. Mater. Process. Tech., 213, 2262-2269(2013).

    [23] C. W. Cheng, J. S. Chen, P. X. Lee, C. W. Chien. Fabrication of microstructures in Foturan glass using infrared femtosecond laser pulses and chemical etching. Opt. Laser. Eng., 48, 811-815(2010).

    [24] D. N. Nikogosyan. Nonlinear Optical Crystals: A Complete Survey(2005).

    [25] P. Ferraro, S. Grilli, P. De Natale. Ferroelectric Crystals for Photonic Applications(2009).

    [26] A. A. Kaminskii. Laser Crystals: Their Physics and Properties(1990).

    [27] Y. Y. Ren, G. Brown, A. Ródenas, S. Beecher, F. Chen, K. K. Ajoy. Mid-infrared waveguide lasers in rare-earth-doped YAG. Opt. Lett., 37, 3339-3341(2012).

    [28] J. Tang, H. J. Yang, Q. Xu, J. W. Liao, S. Yuan, Y. Hu. Analysis of the transfer characteristics of one-dimensional photonic crystal and its application with transfer matrix method. Infrared Laser Eng., 39, 76-80(2010).

    [29] D. E. Zelmon, D. L. Small, R. Page. Refractive-index measurements of undoped yttrium aluminum garnet from 0.4 to 5.0  μm. Appl. Opt., 37, 4933-4935(1998).

    [30] M. J. Steel, B. J. Eggleton. Software speeds measurement and modeling of air-silica photonic crystals. Photon. Spectra, 39, 88-94(2005).

    [31] S. G. Johnson, J. D. Joannopoulos. Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis. Opt. Express, 8, 173-190(2001).

    [32] J. M. Lv, Y. Z. Cheng, W. H. Yuan, X. T. Hao, F. Chen. Three-dimensional femtosecond laser fabrication of waveguide beam splitters in LiNbO3 crystal. Opt. Mater. Express, 5, 1274-1280(2015).

    [33] L. Wang, F. Chen, X. L. Wang, K. M. Wang, Y. Jiao, L. L. Wang. Low-loss planar and stripe waveguides in Nd3+-doped silicate glass produced by oxygen-ion implantation. J. Appl. Phys., 101, 053112(2007).

    [34] D. Marcuse. Loss analysis of single-mode fiber splices. Tech. J., 56, 703-718(1977).

    [35] Y. C. Jia, C. Cheng, J. R. Vázquez de Aldana, G. R. Castillo, B. del Rosal Rabes, Y. Tan, D. Jaque, F. Chen. Monolithic crystalline cladding microstructures for efficient light guiding and beam manipulation in passive and active regimes. Sci. Rep., 4, 5988(2014).

    CLP Journals

    [1] Lingqi Li, Weijin Kong, Feng Chen. Femtosecond laser-inscribed optical waveguides in dielectric crystals: a concise review and recent advances[J]. Advanced Photonics, 2022, 4(2): 024002

    Jinman Lv, Binbin Hong, Yang Tan, Feng Chen, Javier Rodríguez Vázquez de Aldana, Guo Ping Wang. Mid-infrared waveguiding in three-dimensional microstructured optical waveguides fabricated by femtosecond-laser writing and phosphoric acid etching[J]. Photonics Research, 2020, 8(3): 257
    Download Citation