• Acta Physica Sinica
  • Vol. 69, Issue 17, 174207-1 (2020)
Qian Wang1、2、3, Jiang-Shan Zhao1、2、3, Yuan-Yuan Fan1、2、3、4, Xin Guo1、2, and Yi Zhou1、2、3、*
Author Affiliations
  • 1Institute of Microelectronics of Chinese Academy of Sciences, Beijing 100094, China
  • 2Beijing Excimer Laser Technology and Engineering Center, Beijing 100094, China
  • 3University of Chinese Academy of Sciences, Beijing 100049, China
  • 4State Key Laboratory of Applied Optics, Changchun 130033, China
  • show less
    DOI: 10.7498/aps.69.20200087 Cite this Article
    Qian Wang, Jiang-Shan Zhao, Yuan-Yuan Fan, Xin Guo, Yi Zhou. Analysis of ArF excimer laser system discharge characteristics in different buffer gases[J]. Acta Physica Sinica, 2020, 69(17): 174207-1 Copy Citation Text show less
    Simulation process of discharge dynamics of excimer.
    Fig. 1. Simulation process of discharge dynamics of excimer.
    Discharge circuit.
    Fig. 2. Discharge circuit.
    Waveforms of discharge voltage, current, and photon number density (He is the buffer gas).
    Fig. 3. Waveforms of discharge voltage, current, and photon number density (He is the buffer gas).
    Waveforms of discharge voltage, current, and photon number density (Ne is the buffer gas).
    Fig. 4. Waveforms of discharge voltage, current, and photon number density (Ne is the buffer gas).
    Electron number density spatial distribution: (a) He as the buffer gas; (b) Ne as the buffer gas.
    Fig. 5. Electron number density spatial distribution: (a) He as the buffer gas; (b) Ne as the buffer gas.
    Waveforms of Ne+, Ne*, He+, He* number density.
    Fig. 6. Waveforms of Ne+, Ne*, He+, He* number density.
    Waveforms of electron number density at 0.2 cm from cathode: (a) Considering photoionization; (b) without photoionization.
    Fig. 7. Waveforms of electron number density at 0.2 cm from cathode: (a) Considering photoionization; (b) without photoionization.
    Waveforms of discharge voltage, current, and photon number density with and without Xe.
    Fig. 8. Waveforms of discharge voltage, current, and photon number density with and without Xe.
    Waveforms of electron number density spatial distribution with Xe.
    Fig. 9. Waveforms of electron number density spatial distribution with Xe.
    Waveforms of photon number density with different Xe ratios.
    Fig. 10. Waveforms of photon number density with different Xe ratios.
    反应类型反应过程反应系数参考文献
    电子碰撞反应Ar + e → Ar+ + 2e 计算玻尔兹曼方程得到
    Ar + e → Arex + e 计算玻尔兹曼方程得到
    Ar + e → Ar* + e 计算玻尔兹曼方程得到
    Ar* + e → Ar+ + 2e 计算玻尔兹曼方程得到
    F2 + e → F + F 计算玻尔兹曼方程得到
    He + e → He+ + 2e 计算玻尔兹曼方程得到
    He + e → Heex + e 计算玻尔兹曼方程得到
    He + e → He* + e 计算玻尔兹曼方程得到
    中性粒子反应Ar+ + 2 Ar → Ar2+ + Ar 2.5 × 10–31 cm6·s–1[15]
    Ar+ + F → ArF*1 × 10–6 cm3·s–1[15]
    Ar2+ + F→ ArF* + Ar1 × 10–6 cm3·s–1[15]
    Arex → Ar + 1.0 ns[15]
    Ar* + F2 → ArF* + F8 × 10–10 cm3·s–1[15]
    ArF*→Ar + F + 42 ns[15]
    受激辐射ArF* + → ArF + 24 × 10–16 cm3·s–1[15]
    光电离 + F → F + e 1 × 10–17 cm3[15]
    Arex + → Ar+ + e 1 × 10–18 cm3[15]
    Table 1. Plasma reaction process of ArF excimer laser system (He is the buffer gas).
    反应类型反应过程反应系数参考文献
    电子碰撞反应Ar + e → Ar+ + 2e 计算玻尔兹曼方程得到
    Ar + e → Arex + e 计算玻尔兹曼方程得到
    Ar + e → Ar* + e 计算玻尔兹曼方程得到
    Ar* + e → Ar+ + 2e 计算玻尔兹曼方程得到
    F2 + e → F + F 计算玻尔兹曼方程得到
    Ne* + e → Ne+ + 2e 计算玻尔兹曼方程得到
    Ne + e → Ne+ + 2e 计算玻尔兹曼方程得到
    Ne + e → Ne* + e 计算玻尔兹曼方程得到
    中性粒子反应Ne2* + e → 2e + Ne2+(9.75 × 10–9) × (abs(Te))0.71 × exp(–3.4/abs(Te)) [16]
    Ne2+ + e → Ne* + Ne (3.7 × 10–8) × (abs(Te))–0.43[16]
    Ar+ + 2Ar → Ar2+ + Ar 2.5 × 10–31 cm6·s–1[15]
    Ar+ + F → ArF*1 × 10–6 cm3·s–1[15]
    Ar2+ + F → ArF* + Ar1 × 10–6 cm3·s–1[15]
    Arex → Ar + 1.0 ns[15]
    Ar* + F2 → ArF* + F8 × 10–10 cm3·s–1[15]
    2Ne* → Ne+ + Ne + e 5 × 10–10 cm3·s–1[17]
    Ne+ + 2Ne →Ne2+ + Ne 4.4 × 10–32 cm6·s–1[17]
    Ne* + Ne + Ne → Ne2* + Ne 4 × 10–34 cm6·s–1[17]
    Ar + ArF* → 2Ar + F 9 e × 10-12 cm3·s–1[15]
    Ne + ArF* → Ar + Ne + F 1 × 10–12 cm3·s–1[17]
    F2 + ArF* → Ar + 3F 1.9 × 10–9 cm3·s–1[15]
    受激辐射ArF* + → ArF + 24 × 10–16 cm3·s–1[15]
    光电离 + F → F + e 1 × 10–17 cm3[15]
    Arex + → Ar++ e 1 × 10–18 cm3[15]
    Xe + ’→Xe++ e 阈值为 12.1 eV, 截面为1 × 10–16 cm2[18]
    Table 2. Plasma reaction process of ArF excimer laser system (Ne is buffer gas).
    Qian Wang, Jiang-Shan Zhao, Yuan-Yuan Fan, Xin Guo, Yi Zhou. Analysis of ArF excimer laser system discharge characteristics in different buffer gases[J]. Acta Physica Sinica, 2020, 69(17): 174207-1
    Download Citation