• Laser & Optoelectronics Progress
  • Vol. 52, Issue 11, 110002 (2015)
Deng Qingwei*, Huang Yongguang, and Zhu Hongliang
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/lop52.110002 Cite this Article Set citation alerts
    Deng Qingwei, Huang Yongguang, Zhu Hongliang. Newest Achievement of More than 25% Conversion Efficiency with Crystalline Silicon-Base Solar Cell[J]. Laser & Optoelectronics Progress, 2015, 52(11): 110002 Copy Citation Text show less
    References

    [1] Ragsdale R G, Namkoong D. The NASA-Langley building solar project and the supporting Lewis solar technology program[J]. Solar Energy, 1976, 18(1): 41-50.

    [2] Watanabe C. Identification of the role of renewable energy: A view from Japan's challenge: The New Sunshine Program [J]. Renewable Energy, 1995, 6(3): 237-274.

    [3] Chapin D M, Fuller C S, Pearson G L. A new silicon p-n junction photocell for converting solar radiation into electrical power[J]. J Appl Phys, 1954, 25: 676-77.

    [4] Zhao J, Wang A, Green M A. 24.5% efficiency silicon PERT cells on MCZ substrates and 24.7% efficiency PERL cells on FZ substrates[J]. Prog Photovoltaics: Res Appl, 1999, 7(7): 471-474.

    [5] Green M A. The path to 25% silicon solar cell efficiency: History of silicon cell evolution[J]. Progress in Photovoltaics: Research and Applications, 2009, 17(3): 183-189.

    [6] David D S, Peter C, Staffan W, et al.. Toward the practical limits of silicon solar cells[J]. IEEE Journal of Photovoltaics, 2014, 4(6): 1465-1469.

    [7] Junichi N, Naoki A, Takeshi H, et al.. Development of hetero junction back contact Si solar cells[J]. IEEE Journal of Photovoltaics, 2014, 4(6): 1491-1495.

    [8] Keiichiro M, Masato S, Taiki H, et al.. Achievement of more than 25% conversion ffficiency with crystalline silicon heterojunction solar cell[J]. IEEE Journal of Photovoltaics, 2014, 4(6): 1433-1435.

    [9] Zhang Lidian, Shen Honglie, Yue Zhihao. The preparation and performance of the polycrystalline silicon antireflection coat[J]. Acta Optica Sinica, 2013, 33(6): 0631002.

    [10] Zhou Tao, Lu Xiaodong, Li Yuan, et al.. The research of the surface antireflection film in the solar cell[J]. Laser & Optoelectronics Progress, 2014, 51(10): 103101.

    [11] Hahn G. Status of selective emitter technology[C]. 25th European Photovoltaic Solar Energy Conference and Exhibition, 2010.

    [12] Benick J, Hoex B, Dingemans G, et al.. High-efficiency n-type silicon solar cells with front side boron emitter[C]. Proceedings of the 24th European Photovoltaic Solar Energy Conference, 2009: 863-870.

    [13] Green M A, Zhao J, Wang A, et al.. Progress and outlook for high-efficiency crystalline silicon solar cells[J]. Solar Energy Materials and Solar Cells, 2001, 65(1): 9-16.

    [14] Schwartz R J, Lammert M D. Silicon solar cells for high concentration applications[C]. IEEE Electron Devices Meeting, 1975, 21: 350-352.

    [15] Lammert M D, Schwartz R J. The interdigitated back contact solar cell: A silicon solar cell for use in concentrated sunlight[J]. IEEE Transactions on Electron Devices, 1977, 24(4): 337-342.

    [16] Lamers M, Mewe A A, Romijn I G, et al.. Towards 21% efficient N-CZ IBC based on screen printing[C]. 26th EUPVSEC, 2011.

    [17] Peibst R, Harder N P, Merkle A, et al.. High-efficiency RISE IBC solar cells: Influence of rear side passivation on pn junction meander recombination[C]. Proc 28th Eur Photovoltaic Sol Energy Conf Exhib, 2013: 971-975.

    [18] Mulligan W P, Rose D H, Cudzinovic M J, et al.. Manufacture of solar cells with 21% efficiency[C]. Proc 19th EPVSEC, 2004: 387.

    [19] Smith D D, Cousins P J, Masad A, et al.. Generation III high efficiency lower cost technology: Transition to full scale manufacturing[C]. IEEE Photovoltaic Specialists Conference (PVSC), 2012: 001594.

    [20] Swanson R M. Approaching the 29% limit efficiency of silicon solar cells[C]. Conference Record of the Thirty-first IEEE, 2005: 889-894.

    [21] Tawada Y, Tsuge K, Kondo M, et al.. Properties and structure of a-SiC: H for high-efficiency a-Si solar cell[J]. Journal of Applied Physics, 1982, 53(7): 5273-5281.

    [22] Taguchi M, Yano A, Tohoda S, et al.. 24.7% record efficiency HIT solar cell on thin silicon wafer[J]. IEEE Journal of Photovoltaics, 2014, 4(1): 96-99.

    [23] Zhang chao, Zhang Qingmao, Guo liang, et al.. Texturing process with 355 nm laser for amorphous silicon film solar cell [J]. Chinese J Lasers, 2013, 40(7): 0707004.

    [24] Xia Bo, Jiang Lan, Wang Sumei, et al.. Femtosecond laser drilling of micro-holes[J]. Chinese J Lasers, 2013, 40(2): 0201001.

    [25] Xiao S Z, Ostendorf A. Laser processing in solar cell production (invited paper)[J]. Chinese J Lasers, 2009, 36(12): 3116-3124.

    CLP Journals

    [1] Li Wei, Wang Yu, Wu Tengfei. Progress in Black Silicon Infrared Detectors[J]. Laser & Optoelectronics Progress, 2016, 53(7): 70004

    [2] Li Guangji, Lu Jian, Wang Chengmin, Zhang Hongchao, Zhou Dayong. Simulation of Laser Irradiation of One-Dimensional In0.3Ga0.7As Solar Cells[J]. Laser & Optoelectronics Progress, 2018, 55(10): 101601

    [3] Huang Qianlu, Zhou Haifeng, Qian Yiwei, Wang Qiang. Design and Study of Double Parallel Junctions Solar Cells[J]. Laser & Optoelectronics Progress, 2016, 53(12): 121601

    Deng Qingwei, Huang Yongguang, Zhu Hongliang. Newest Achievement of More than 25% Conversion Efficiency with Crystalline Silicon-Base Solar Cell[J]. Laser & Optoelectronics Progress, 2015, 52(11): 110002
    Download Citation