• Acta Optica Sinica
  • Vol. 41, Issue 11, 1129001 (2021)
Panpan Wu1、2, Paerhatijiang Tuersun1、2、*, Remilai Abulaiti1、2, and Yuxia Zheng1、2
Author Affiliations
  • 1School of Physics and Electronic Engineering, Xinjiang Normal University, Urumqi, Xinjiang 830054, China
  • 2Laboratory of Novel Light Source and Micro/Nano-Optics, Xinjiang Normal University, Urumqi, Xinjiang 830054, China
  • show less
    DOI: 10.3788/AOS202141.1129001 Cite this Article Set citation alerts
    Panpan Wu, Paerhatijiang Tuersun, Remilai Abulaiti, Yuxia Zheng. Optimization of Light Absorption and Backscattering Characteristics of Au-Ag Alloy Nanoshells[J]. Acta Optica Sinica, 2021, 41(11): 1129001 Copy Citation Text show less
    References

    [1] Mulvaney P. Surface plasmon spectroscopy of nanosized metal particles[J]. Langmuir, 12, 788-800(1996).

    [2] Kelly K L, Coronado E, Zhao L L et al. The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment[J]. The Journal of Physical Chemistry B, 107, 668-677(2003).

    [3] Guler U, Turan R. Effect of particle properties and light polarization on the plasmonic resonances in metallic nanoparticles[J]. Optics Express, 18, 17322-17338(2010).

    [4] Jackson P, Periasamy S, Bansal V et al. Evaluation of the effects of gold nanoparticle shape and size on contrast enhancement in radiological imaging[J]. Australasian Physical Engineering Sciences in Medicine, 34, 243-249(2011).

    [5] Wang J, Sun J, Hu W et al. A porous Au@Rh bimetallic core-shell nanostructure as an H2O2-driven oxygenerator to alleviate tumor hypoxia for simultaneous bimodal imaging and enhanced photodynamic therapy[J]. Advanced Materials (Deerfield Beach, Fla.), 32, e2001862(2020).

    [6] Li Z, Qian W N, Wei S M et al. Application of photothermal conversion nanomaterials in tumor photothermal therapy[J]. Laser & Optoelectronics Progress, 57, 170005(2020).

    [7] Fathi F, Rashidi M R, Omidi Y. Ultra-sensitive detection by metal nanoparticles-mediated enhanced SPR biosensors[J]. Talanta, 192, 118-127(2019).

    [8] Kaya S I, Kurbanoglu S, Ozkan S A. Nanomaterials-based nanosensors for the simultaneous electrochemical determination of biologically important compounds: ascorbic acid, uric acid, and dopamine[J]. Critical Reviews in Analytical Chemistry, 49, 101-125(2019).

    [9] Negrín-Montecelo Y, Comesaña-Hermo M, Khorashad L K et al. Photophysical effects behind the efficiency of hot electron injection in plasmon-assisted catalysis: the joint role of morphology and composition[J]. ACS Energy Letters, 5, 395-402(2020).

    [10] Xu K C, Zhou R, Takei K et al. Toward flexible surface-enhanced Raman scattering (SERS) sensors for point-of-care diagnostics[J]. Advanced Science, 6, 1900925(2019).

    [11] Nguyen L, Dass M, Ober M F et al. Chiral assembly of gold-silver core-shell plasmonic nanorods on DNA origami with strong optical activity[J]. ACS Nano, 14, 7454-7461(2020).

    [12] Chiu C Y, Chen C K, Chang C W et al. Surfactant-directed fabrication of supercrystals from the assembly of polyhedral Au-Pd core-shell nanocrystals and their electrical and optical properties[J]. Journal of the American Chemical Society, 137, 2265-2275(2015).

    [13] Kim J, Lee J E, Lee H W et al. Catalytic ozonation of toluene using Mn-M bimetallic HZSM-5 (M: Fe, Cu, Ru, Ag) catalysts at room temperature[J]. Journal of Hazardous Materials, 397, 122577(2020).

    [14] Yakupu X, Tuersun P, Wu P P. Optimization of light absorption and scattering properties of gold nanospheroids[J]. Acta Optica Sinica, 40, 0429001(2020).

    [15] Liu Y L, Kangas J, Wang Y R et al. Photothermal conversion of gold nanoparticles for uniform pulsed laser warming of vitrified biomaterials[J]. Nanoscale, 12, 12346-12356(2020).

    [16] Garcia M A. Surface plasmons in metallic nanoparticles: fundamentals and applications[J]. Journal of Physics D: Applied Physics, 44, 283001(2011).

    [17] Afzalinia A, Mirzaee M. Ultrasensitive fluorescent miRNA biosensor based on a “sandwich” oligonucleotide hybridization and fluorescence resonance energy transfer process using an ln(III)-MOF and Ag nanoparticles for early cancer diagnosis: application of central composite design[J]. ACS Applied Materials & Interfaces, 12, 16076-16087(2020).

    [18] Jiang T T, Song J, Zhang W T et al. Au-Ag@Au hollow nanostructure with enhanced chemical stability and improved photothermal transduction efficiency for cancer treatment[J]. ACS Applied Materials & Interfaces, 7, 21985-21994(2015).

    [19] Liu R X, Guo J H, Ma G et al. Alloyed crystalline Au-Ag hollow nanostructures with high chemical stability and catalytic performance[J]. ACS Applied Materials & Interfaces, 8, 16833-16844(2016).

    [20] Qiu G Y, Ng S P. Wu C M L. Bimetallic Au-Ag alloy nanoislands for highly sensitive localized surface plasmon resonance biosensing[J]. Sensors and Actuators B: Chemical, 265, 459-467(2018).

    [21] Lee T, Kwon S, Lee J J. Highly dense and accessible nanogaps in Au-Ag alloy patterned nanostructures for surface-enhanced Raman spectroscopy analysis[J]. ACS Applied Nano Materials, 3, 5920-5927(2020).

    [22] Joseph D, Kwak C H, Huh Y S et al. Synthesis of AuAg@Ag core@shell hollow cubic nanostructures as SERS substrates for attomolar chemical sensing[J]. Sensors and Actuators B: Chemical, 281, 471-477(2019).

    [23] Meng T Q, Jiang R H, Wang S Y et al. Stem cell membrane-coated Au-Ag-PDA nanoparticle-guided photothermal acne therapy[J]. Colloids and Surfaces. B, Biointerfaces, 192, 111145(2020).

    [24] Wang X, Kan C X, Xu J et al. Dielectric function modelling and sensitivity forecast for Au-Ag alloy nanostructures[J]. Physical Chemistry Chemical Physics, 22, 14932-14940(2020).

    [25] Yue X, Hou J, Zhao H F et al. Au-Ag alloy nanoparticles with tunable cavity for plasmon-enhanced photocatalytic H2 evolution[J]. Journal of Energy Chemistry, 49, 1-7(2020).

    [26] Asgari S, Sun L, Lin J et al. Nanofibrillar cellulose/Au@Ag nanoparticle nanocomposite as a SERS substrate for detection of paraquat and thiram in lettuce[J]. Microchimica Acta, 187, 390(2020).

    [27] Aden A L, Kerker M. Scattering of electromagnetic waves from two concentric spheres[J]. Journal of Applied Physics, 22, 1242-1246(1951).

    [28] Bohren C F, Huffman D R. Absorption and scattering of light by small particles[M]. New York: Wiley(1998).

    [29] Rioux D, Vallières S, Besner S et al. An analytic model for the dielectric function of Au, Ag, and their alloys[J]. Advanced Optical Materials, 2, 176-182(2014).

    [30] Huang K J, Li S X, Bai Z C et al. Surface plasmons based on nonlocal and size-dependent effects of metallic nanoparticles[J]. Laser & Optoelectronics Progress, 56, 202414(2019).

    [31] Kreibig U, Vollmer M. Experimental methods[M]. ∥Optical properties of metal clusters. Springer series in materials science. Heidelberg: Springer, 25, 203-274(1995).

    [32] Malitson I H. Interspecimen comparison of the refractive index of fused silica[J]. Journal of the Optical Society of America, 55, 1205-1209(1965).

    Panpan Wu, Paerhatijiang Tuersun, Remilai Abulaiti, Yuxia Zheng. Optimization of Light Absorption and Backscattering Characteristics of Au-Ag Alloy Nanoshells[J]. Acta Optica Sinica, 2021, 41(11): 1129001
    Download Citation