• Chinese Journal of Quantum Electronics
  • Vol. 21, Issue 4, 401 (2004)
[in Chinese]1、*, [in Chinese]1, [in Chinese]1, [in Chinese]1, [in Chinese]2, and [in Chinese]2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: Cite this Article
    [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese]. Gated-mode single-photon detection and its applications using InGaAs-APD[J]. Chinese Journal of Quantum Electronics, 2004, 21(4): 401 Copy Citation Text show less
    References

    [1] Robert G W B, Kevin D R, John G R. Characterization of silicon avalanche photodiodes for photon correlation measurement 1: passive quenching [J]. Appl. Opt., 1986, 25(22): 4122-4126.

    [2] Robert G W B, Robin J, John G R, et al. Characterization of silicon avalanche photodiodes for photon correlation measurement 2: active quenching [J]. Appl. Opt., 1987, 26(12): 2383-2389.

    [3] Owens P C M, Rarity J G, et al. Photon counting with passively quenched germanium avalanche [J]. Appl. Opt.,1994, 33(30): 6895-6901.

    [4] Lacaita A, Francese P A, Zappa F, et al. Single photon detection beyond 1 μm: performances of commercially available germanium photodiodes [J]. Appl. Opt., 1994, 33(30): 6902-6918.

    [5] Lacaita A, Zappa F, Cova S, et al. Single photon detection beyond 1 μm: performances of commercially available InGaAs/InP detectors [J]. Appl. Opt., 1996, 35(16): 2986-2996.

    [6] Philip A H, Gerald S B, Alison Y L, et al. Performance and design of InGaAs/InP photodiodes for single-photon counting at 1.55 μm. Appl. Opt., 2000, 39(36): 6818-6829.

    [7] Karlsson A, Bourennane M, Ribordy G, et al. A single photon counter for long-haul telecom [J]. IEEE Circuits Devices Mag., 1999, 15(6): 35-40.

    [8] Kindt W J, Shahrjerdy N H, Zejjl H W. A silicon avalanche photodiode for single optical photon counting in the Geiger mode [J]. Sensors and Actuators, 1997, A60: 98-102.

    [9] John G R, Thomas E W, Kevin D R, et al. Single-photon counting for the 1300~1600 nm range by use of Peltier-cooled and passively quenched InGaAs avalanche photodiodes [J]. Appl. Opt., 2000, 39(36): 6746-6753.

    [10] Prochazka I. Peltier-cooled and actively quenched operation of InGaAs/InP avalanche photodiodes as photon counters at a 1.55μm wavelength [J]. Appl. Opt., 2001, 40(33): 6012-6018.

    [11] Ribordy G, Gautier J D, Zbinden H, et al. Performance of InGaAs/InP avalanche photodiodes as gated-mode photon counters [J]. Appl. Opt., 1998, 37(12): 2272-2277.

    [12] Tomita A, Nakamura K. Balanced, gated-mode photon detector for quantum-bit discrimination at 1550 nm [J].Opt. Lett., 2002, 27: 1827-1829.

    [13] Stucki D, Ribordy G. Photon counting for quntum key distribution with Peltier cooled InGaAs/InP APDs [J]. J.of Modern Opt., 2001, 48: 1967-1981.

    [14] Cova S, Lacaita A. Trapping phenomena in avalanche photodiodes on nanosecond scale [J]. IEEE Electron Device Lett., 1991, 12: 685-687.

    [15] Ekert A K, Huttner B, et al. Eavesdropping on quantum cryptographical systems [J]. Phys. Rev. A, 1994, 50(2):1047-1056.

    [16] Hughes R J, Alde D M, et al. Quantum cryptography [J]. Contemporary Physics, 1995, 36(3): 149-163.

    [17] Phoenix S J D, et al. Quantum cryptography: how to beat the code breakers using quantum mechanics [J].Contemporary Physics, 1995, 36(3): 165-195.

    [18] Townsend P D. Quantum cryptography on multiuser optical fibre network [J]. Nature, 1997, 385: 47-49.

    [19] Lo H K, Chau H F. Unconditional security of quantum key distribution over arbitrarily long distances [J]. Science,1999, 283: 2050-2056.

    [20] Gottesman D, Lo H K. From quantum cheating to quantum security [J]. Physics Today, 2000, 11: 22-27.

    [21] Hwang W Y, Ahn D, et al. Eavesdropper's optimal information invariations of Bennett-Brassard 1984 quantum key distribution in the coherent attacks [J]. Phy. Lett. A, 2001, 279: 133-138.

    [22] Bennett C H, Brassard G, et al. Experimental quantum cryptography [J]. J. Cryptology, 1992, 5: 3-28.

    [23] Muller A, Herzog T, et al. "Plug and play " systems for quantum cryptography [J]. Appl. Phys. Lett., 1997,70(7): 793-795.

    [24] Townsend P D. Quantum cryptography on optical fiber networks [J]. Optical Fiber Technology, 1998, 4: 345-347.

    [25] Bourennane M, Gibson F, et al. Experiments on long wavelength (1550 nm) "plug and play " quantum cryptography systems [J]. Optics Express, 1999, 4: 383-387.

    [26] Bethune D, Risk W. An autocompensating fiber-optic quantum cryptography system based on polarization splitting of light [J]. IEEE J. of Quant. Elect., 2000, 36(3): 340-347.

    [27] Ribordy G, et al. Fast and user-friendly quantum key distribution [J]. J. of Modern Opt., 2000, 47: 517-531.

    [28] Hughes R, Morgan G, Peterson C. Quantum key distribution over a 48 km optical fibre network [J]. J. of Modern Optics, 2000, 47: 533-547.

    [29] Zbinden H, Gisin N, et al. Practical aspects of quantum cryptographic key distribution [J]. J. Cryptology, 2000,13: 207-220.

    [30] Stucki D, Gish N, et al. Quantum key distribution over 67 km with a plug & play system [J]. New J. of Physics,2002, 41(4): 1-8.

    [31] Zbinden H, Gautier J D, Gisin N, et al. Interferometry with Faraday mirrors for quantum cryptography [J].Electron. Lett., 1998, 33(7): 586-588.

    [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese]. Gated-mode single-photon detection and its applications using InGaAs-APD[J]. Chinese Journal of Quantum Electronics, 2004, 21(4): 401
    Download Citation