• Laser & Optoelectronics Progress
  • Vol. 59, Issue 11, 1100005 (2022)
Xin Huang, Qinghua Meng*, Kezhi Zhang, Fuxian He, Xuheng Lu, Ruiyang Wang, Liu Tang, and Zhefeng Wu
Author Affiliations
  • School of Physics and Electronics, Nanning Normal University, Nanning 530299, Guangxi , China
  • show less
    DOI: 10.3788/LOP202259.1100005 Cite this Article Set citation alerts
    Xin Huang, Qinghua Meng, Kezhi Zhang, Fuxian He, Xuheng Lu, Ruiyang Wang, Liu Tang, Zhefeng Wu. Research Progress of Micro Fabry-Perot Cavity Tunable Filter[J]. Laser & Optoelectronics Progress, 2022, 59(11): 1100005 Copy Citation Text show less
    Principle and output characteristics of the F-P cavity. (a) Working principle of the F-P cavity; (b) output characteristics of the F-P cavity[7]
    Fig. 1. Principle and output characteristics of the F-P cavity. (a) Working principle of the F-P cavity; (b) output characteristics of the F-P cavity[7]
    Schematic diagram of the bulk micro-machined filter[8]
    Fig. 2. Schematic diagram of the bulk micro-machined filter[8]
    Schematic diagram of surface micro-machined filter[8]
    Fig. 3. Schematic diagram of surface micro-machined filter[8]
    Structure of the DBR[12]
    Fig. 4. Structure of the DBR[12]
    Schematic diagram of MEMS FPTF for adaptive multispectral thermal imaging[13]
    Fig. 5. Schematic diagram of MEMS FPTF for adaptive multispectral thermal imaging[13]
    Cross-sectional of MEMS FPTF used for hyperspectral imaging air spacer[14]
    Fig. 6. Cross-sectional of MEMS FPTF used for hyperspectral imaging air spacer[14]
    Cross-sectional views of single- and double-membrane FPIs. (a) Cross-sectional view of single-membrane FPI; (b) cross-sectional view of double-membrane FP[15]
    Fig. 7. Cross-sectional views of single- and double-membrane FPIs. (a) Cross-sectional view of single-membrane FPI; (b) cross-sectional view of double-membrane FP[15]
    Cross-sectional of 900-1650 nm broadband MEMS FPTF[16]
    Fig. 8. Cross-sectional of 900-1650 nm broadband MEMS FPTF[16]
    F-P filter with sub-wavelength structure mirror[22]
    Fig. 9. F-P filter with sub-wavelength structure mirror[22]
    Cross-sectional schematic diagram of MEMS FPTF[17]
    Fig. 10. Cross-sectional schematic diagram of MEMS FPTF[17]
    Sectional view of tunable dual-frequency MEMS F-P filter[23]
    Fig. 11. Sectional view of tunable dual-frequency MEMS F-P filter[23]
    Equipment of an IR gas analyzer with µFPF[25]
    Fig. 12. Equipment of an IR gas analyzer with µFPF[25]
    Schematic diagram of the new μFP filter chip design[26]
    Fig. 13. Schematic diagram of the new μFP filter chip design[26]
    Overall structure of the MEMS FPI device[29]
    Fig. 14. Overall structure of the MEMS FPI device[29]
    Microstructure diagram of the reflector[30]
    Fig. 15. Microstructure diagram of the reflector[30]
    Monolithically integrated FPI on photodiode[31]
    Fig. 16. Monolithically integrated FPI on photodiode[31]
    Structure of the polysilicon-silicon nitride release Bragg reflector[33]
    Fig. 17. Structure of the polysilicon-silicon nitride release Bragg reflector[33]
    Structure of the MEMS Fabry-Perot interferometer[35]
    Fig. 18. Structure of the MEMS Fabry-Perot interferometer[35]
    Structure of MEMS FPI mirror and actuator electrodes[36]
    Fig. 19. Structure of MEMS FPI mirror and actuator electrodes[36]
    Electron micrographs of F-P based devices[8]
    Fig. 20. Electron micrographs of F-P based devices[8]
    Schematic diagram of simplified MEMS tunable F-P interferometer filter structure[40]
    Fig. 21. Schematic diagram of simplified MEMS tunable F-P interferometer filter structure[40]
    Schematic diagram of MEMS F-P filter[41]
    Fig. 22. Schematic diagram of MEMS F-P filter[41]
    Microbridge structure diagram. (a) X-arm structure; (b) +circular-arm structure; (c) L-arm structure[44]
    Fig. 23. Microbridge structure diagram. (a) X-arm structure; (b) +circular-arm structure; (c) L-arm structure[44]
    Structural of four bridge decks. (a) Holeless bridge deck; (b) round hole bridge deck; (c) square hole bridge deck;(d) diamond-hole bridge deck[45]
    Fig. 24. Structural of four bridge decks. (a) Holeless bridge deck; (b) round hole bridge deck; (c) square hole bridge deck;(d) diamond-hole bridge deck[45]
    FilterBulk micromachined filterSurface micromachined filter
    Basic technologytwo or more wafers,wafer bonding with spacer layerone wafer,sacrificial layer etching
    Design flexibility for the reflectorshighlow
    Identical(matched)reflectorsyesno
    Anti-reflection coating(ARC)requiredyes,both sideson lower substrate
    Stiffness /flatness of the reflectorshigh,no static and dynamic deformationslow,static and dynamic deformations
    Moving mass,acceleration sensitivityhigher,not neglectablevery low,neglectable
    Design flexibility for electrostatic actuation and tuning rangehigherlower
    Chip size,aperture sizelargersmaller
    Complexity and costs of fabricationhigherlower
    Table 1. Characteristics and design of bulk micro-machined and surface micro-machined filters[8]
    Xin Huang, Qinghua Meng, Kezhi Zhang, Fuxian He, Xuheng Lu, Ruiyang Wang, Liu Tang, Zhefeng Wu. Research Progress of Micro Fabry-Perot Cavity Tunable Filter[J]. Laser & Optoelectronics Progress, 2022, 59(11): 1100005
    Download Citation