• Acta Optica Sinica
  • Vol. 38, Issue 7, 730001 (2018)
Zhang Xiaoling1、2、3, Yin Gaofang1、3, Zhao Nanjing1、3、*, Yang Ruifang1、3, Qin Zhisong1、3、4, Chen Shuang1、2、3, Gan Tingting1、3, Xiao Xue1、3, Duan Jingbo1、3, Liu Jianguo1、3, and Liu Wenqing1、3
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • 4[in Chinese]
  • show less
    DOI: 10.3788/aos201838.0730001 Cite this Article Set citation alerts
    Zhang Xiaoling, Yin Gaofang, Zhao Nanjing, Yang Ruifang, Qin Zhisong, Chen Shuang, Gan Tingting, Xiao Xue, Duan Jingbo, Liu Jianguo, Liu Wenqing. Construction of Three-Dimensional Fluorescence Standard Spectra of Algae in vivo Based on Weighted Average Method[J]. Acta Optica Sinica, 2018, 38(7): 730001 Copy Citation Text show less
    References

    [1] Hilton J, Rigg E, Jaworski G. Algal identification using in vivo fluorescence spectra[J]. Journal of Plankton Research, 1989, 11(1): 65-74.

    [2] Bennett A, Bogorad L. Complementary chromatic adaptation in a filamentous blue-green alga[J]. Journal of Cell Biology, 1973, 58(2): 419-435.

    [3] Proctor C W, Roesler C S. New insights on obtaining phytoplankton concentration and composition from in situ multispectral chlorophyll fluorescence[J]. Limnology and Oceanography, 2010, 8(12): 695-708.

    [4] Jakob T, Schreiber U, Kirchesch V, et al. Estimation of chlorophyll content and daily primary production of the major algal groups by means of multiwavelength-excitation PAM chlorophyll fluorometry: performance and methodological limits[J]. Photosynthesis Research, 2005, 83(3): 343-361.

    [5] Su R G, Hu X P, Zhang C S, et al. Discrimination of red tide algae by fluorescence spectra and principle component analysis[J]. Environmental Science, 2007, 28(7): 1529-1533.

    [6] Wang Z G, Liu W Q, Liu J G, et al. The classified measuring of three dimensional excitation-emission fluorescence matrix technique on phytoplankton concentration in water body[J]. China Environmental Science, 2008, 28(2): 136-141.

    [7] Lawrenz E, Richardson T L. Howdoes the species used for calibration affect chlorophyll a measurements by in situ fluorometry [J]. Estuaries and Coasts, 2011, 34(4): 872-883.

    [8] Loftus M E, Seliger H H. Some limitations of the in vivo fluorescence technique[J]. Chesapeake Science, 1975, 16(2): 79-92.

    [9] Jakob T, Schreiber U, Kirchesch V, et al. Estimation of chlorophyll content and daily primary production of the major algal groups by means of multiwavelength-excitation PAM chlorophyll fluorometry: performance and methodological limits[J]. Photosynthesis Research, 2005, 83(3): 343-361.

    [10] Qin Z S, Yin G F, Zhao N J, et al. Photosynthesis parameters measurement technology based on fast phase and relaxation fluorescence induced by optical pulses[J]. Acta Photonica Sinica, 2017, 46(9): 0930003.

    [11] Shi C Y, Gao X H, Yin G F, et al. Design of phytoplankton photosynthetic parameter measurement system based on variable pulse induced fluorescence[J]. Laser & Optoelectronics Progress, 2016, 53(7): 072301.

    [12] Zhang X L, Yin G F, Zhao N J, et al. Research on fluorescence spectral characteristics of phycocyanin under different habitat conditions[J]. Spectroscopy and Spectral Analysis, 2017, 37(4): 1145-1151.

    [13] National Environmental Protection Bureau, Monitoring analysis methods for water and wastewater[M]. 4th ed. Beijing: China Environmental Science Press, 2002.

    [14] McQuaid N, Zamyadi A, Prévost M, et al. Use of in vivo phycocyanin fluorescence to monitor potential microcystin-producing cyanobacterial biovolume in a drinking water source[J]. Journal of Environmental Monitoring, 2011, 13(2): 455-463.

    Zhang Xiaoling, Yin Gaofang, Zhao Nanjing, Yang Ruifang, Qin Zhisong, Chen Shuang, Gan Tingting, Xiao Xue, Duan Jingbo, Liu Jianguo, Liu Wenqing. Construction of Three-Dimensional Fluorescence Standard Spectra of Algae in vivo Based on Weighted Average Method[J]. Acta Optica Sinica, 2018, 38(7): 730001
    Download Citation