• Infrared and Laser Engineering
  • Vol. 46, Issue 4, 411001 (2017)
Liu Bingyi1、*, Zhuang Quanfeng1, Qin Shengguang1、2, Wu Songhua1, and Liu Jintao3
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    DOI: 10.3788/irla201746.0411001 Cite this Article
    Liu Bingyi, Zhuang Quanfeng, Qin Shengguang, Wu Songhua, Liu Jintao. Aerosol classification method based on high spectral resolution lidar[J]. Infrared and Laser Engineering, 2017, 46(4): 411001 Copy Citation Text show less
    References

    [2] Climate Change 2013: the Physical Science Basis. Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change[M]. New York: Cambridge University Press, 2014.

    [3] Tie X, Cao J. Aerosol pollution in China: Present and future impact on environment[J]. Particuology, 2009, 7(6): 426-431.

    [4] R Raymond M. Measures. Laser Remote Sensing: Fundamentals and Applications[M]. Florida: Wiley, 1992.

    [5] Winker D M, Vaughan M A, Omar A, et al. Overview of the CALIPSO mission and CALIOP data processing algorithms[J]. Journal of Atmospheric and Oceanic Technology, 2009, 26(11): 2310-2323.

    [6] Ansmann A, Wandinger U, Le Rille O, et al. Particle backscatter and extinction profiling with the spaceborne high-spectral-resolution Doppler lidar ALADIN: methodology and simulations[J]. Applied Optics, 2007, 46(26): 6606-6622.

    [7] Sy O O, Tanelli S, Takahashi N, et al. Simulation of Earth CARE spaceborne Doppler radar products using ground-based and airborne data: effects of aliasing and nonuniform beam-filling[J]. Geoscience and Remote Sensing IEEE Transactions on, 2014, 52(2): 1463-1479.

    [8] Mace G G, Starr D O, Marchand R, et al. Contemplating synergistic algorithms for the NASA ACE mission[C]//SPIE Remote Sensing. International Society for Optics and Photonics, 2013, 8890: 88900I.

    [9] Liu Dong, Yang Yongying, Zhou Yudi, et al. High spectral resolution lidar for atmosphere remote sensing:a review[J]. Infrared and Laser Engineering, 2015, 44(9): 2535-2546. (in Chinese)

    [10] Hua Dengxin, Song Xiaoquan. Advances in lidar remote sensing techniques [J]. Infrared and Laser Engineering, 2008, 37(S): 21-27. (in Chinese)

    [11] Liu Z, Sugimoto N, Murayama T. Extinction-to-backscatter ratio of Asian dust observed with high-spectral-resolution lidar and Raman lidar[J]. Applied Optics, 2002, 41(15): 2760-2767.

    [12] Sugimoto N, Lee C H. Characteristics of dust aerosols inferred from lidar depolarization measurements at two wavelengths[J]. Applied Optics, 2006, 45(28): 7468-7474.

    [13] Xie C, Nishizawa T, Sugimoto N, et al. Characteristics of aerosol optical properties in pollution and Asian dust episodes over Beijing, China[J]. Applied Optics, 2008, 47(27): 4945-4951.

    [15] Burton S P, Ferrare R A, Hostetler C A, et al. Aerosol classification using airborne High Spectral Resolution Lidar measurements-methodology and examples[J]. Atmospheric Measurement Techniques, 2012, 5(1): 73-98.

    [17] Shipley S T, Tracy D H, Eloranta E W, et al. High resolution lidar to measure optical scattering properties of atmospheric aerosols. 1: Theory and instrumentation[J]. Applied Optics, 1983, 22(23): 3716- 3724.

    [18] Hua D, Uchida M, Kobayashi T. Ultraviolet high-spectral-resolution Rayleigh-Mie lidar with a dual-pass Fabry-Perot etalon for measuring atmospheric temperature profiles of the troposphere[J]. Optics Letters, 2004, 29(10): 1063-1065.

    [19] Imaki M, Kobayashi T. Ultraviolet high-spectral-resolution Doppler lidar for measuring wind field and aerosol optical properties[J]. Applied Optics, 2005, 44(28): 6023-6030.

    [20] She C Y, Alvarez II R J, Caldwell L M, et al. High-spectral-resolution Rayleigh-Mie lidar measurements of aerosol and atmospheric profiles[J]. Optics Letters, 1992, 17(7): 541-543.

    [21] Piironen P, Eloranta E W. Demonstration of a high-spectral-resolution lidar based on an iodine absorption filter[J]. Optics Letters, 1994, 19(3): 234 -236.

    [22] Hair J W. A high spectral resolution lidar at 532 nm for simultaneous measurement of atmospheric state and aerosol profiles using iodine vapor filters[D]. Colorado: Colorado State University, 1998.

    [23] Hair J W, Hostetler C A, Cook A L, et al. Airborne High Spectral Resolution Lidar for profiling aerosol optical properties[J]. Applied Optics, 2008, 47(36): 6734-6752.

    [24] Esselborn M, Wirth M, Fix A, et al. Airborne high spectral resolution lidar for measuring aerosol extinction and backscatter coefficients[J]. Applied Optics, 2008, 47(3): 346-358.

    [25] Schwiesow R L, Lading L. Temperature profiling by Rayleigh-scattering lidar[J]. Applied Optics, 1981, 20(11): 1972-1979.

    [26] Shepherd G G. Application of Doppler Michelson imaging to upper atmospheric wind measurement: WINDII and beyond[J]. Applied Optics, 1996, 35(16): 2764-2773.

    [27] Liu D, Hostetler C, Miller I, et al. System analysis of a tilted field-widened Michelson interferometer for high spectral resolution lidar[J]. Optics Express, 2012, 20(2): 1406-1420.

    [28] Liu Z, Kobayashi T. Differential discrimination technique for incoherent Doppler lidar to measure atmospheric wind and backscatter ratio[J]. Optical Review, 1996, 3(1): 47-52.

    [29] Bruneau D, Pelon J. Simultaneous measurements of particle backscattering and extinction coefficients and wind velocity by lidar with a Mach-Zehnder interferometer: principle of operation and performance assessment[J]. Applied Optics, 2003, 42(6): 1101-1114.

    [30] Bruneau D, Pelon J, Blouzon F, et al. 355-nm high spectral resolution airborne lidar LNG: system description and first results[J]. Applied Optics, 2015, 54(29): 8776-8785.

    [31] Tenti G, Boley C D, Desai R C. On the kinetic model description of Rayleigh-Brillouin scattering from molecular gases[J]. Canadian Journal of Physics, 1974, 52(4): 285-290.

    [32] Liu B Y, Esselborn M, Wirth M, et al. Influence of molecular scattering models on aerosol optical properties measured by high spectral resolution lidar[J]. Applied Optics, 2009, 48(27): 5143-5154.

    [33] Miles R B, Lempert W R, Forkey J N. Laser rayleigh scattering[J]. Measurement Science and Technology, 2001, 12(5): R33.

    [34] Freudenthaler V, Esselborn M, Wiegner M, et al. Depolarization ratio profiling at several wavelengths in pure Saharan dust during SAMUM 2006[J]. Tellus, 2009, 61(1):165-179.

    [35] Mishchenko M I, Sassen K. Depolarization of lidar returns by small ice crystals: An application to contrails[J]. Geophysical Research Letters, 1998, 25(3): 309-312.

    [36] Sugimoto N, Matsui I, Shimizu A, et al. Observation of dust and anthropogenic aerosol plumes in the northwest Pacific with a two‐wavelength polarization lidar on board the research vessel Mirai[J]. Geophysical Research Letters, 2002, 29(19). Doi: 10.1029/2002GL015112.

    [37] Sassen K, Hsueh C. Contrail properties derived from high-resolution polarization lidar studies during SUCCESS[J]. Geophysical Research Letters, 1998, 25(8): 1165-1168.

    [38] Sakai T, Nagai T, Nakazato M, et al. Ice clouds and Asian dust studied with lidar measurements of particle extinction-to-backscatter ratio, particle depolarization, and water-vapor mixing ratio over Tsukuba[J]. Applied Optics, 2003, 42(36): 7103-7116.

    [39] Sassen K. Depolarization of laser light backscattered by artificial clouds[J]. Journal of Applied Meteorology, 1974, 13(8): 923-933.

    [40] Liu Z S, Liu B Y, Li Z G, et al. Wind measurements with incoherent Doppler lidar based on iodine filters at night and day[J]. Applied Physics B, 2007, 88(2): 327-335.

    [41] Liu Z S, Liu B Y, Wu S H, et al. High spatial and temporal resolution mobile incoherent Doppler lidar for sea surface wind measurements[J]. Optics Letters, 2008, 33(13): 1485-1487.

    [42] Li Z G, Liu Z S, Yan Z A, et al. Research on characters of the marine atmospheric boundary layer structure and aerosol profiles by high spectral resolution lidar[J]. Optical Engineering, 2008, 47(8): 086001-086001-6.

    [43] Song Xiaoquan, Guo Jinjia, Yan Zhao′ai, et al. Atmospheric aerosol optical parameters detection research with High Spectral Resolution Lidar[J]. Progress in Natural Science, 2008, 18(9): 1009-1015. (in Chinese)

    [44] Liu Z S, Bi D C, Song X, et al. Iodine-filter-based high spectral resolution lidar for atmospheric temperature measurements[J]. Optics Letters, 2009, 34(18): 2712-2714.

    [45] Wu S, Song X, Liu B, et al. Mobile multi-wavelength polarization Raman lidar for water vapor, cloud and aerosol measurement[J]. Optics Express, 2015, 23(26): 33870-33892.

    [46] Zhang Wei. Design and calibration of polarization channel in Water vapor-Cloud-Aerosol Lidar[D]. Qingdao: Ocean University of China, 2013. (in Chinese)

    [47] Draxler R R, Rolph G D. HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory) model, obtained from the National Oceanic and Atmospheric Administration′s Air Resources Laboratory[EB/OL]. [2016-03-10]. http://ready.arl.noaa.gov/HYSPLIT_traj.php.

    [48] Christensen J H. NAAPS(Navy Aerosol Analysis and Prediction System) model, obtained from The Naval Research Laboratory[EB/OL]. [2016-03-10]. http://www.nrlmry.navy.mil/aerosol_web/.

    [49] Omar A H, Winker D M, Vaughan M A, et al. The CALIPSO automated aerosol classification and lidar ratio selection algorithm[J]. Journal of Atmospheric and Oceanic Technology, 2009, 26(10): 1994-2014.

    [50] Illingworth A J, Barker H W, Beljaars A, et al. The EarthCARE satellite: the next step forward in global measurements of clouds, aerosols, precipitation, and radiation[J]. Bulletin of the American Meteorological Society, 2015, 96(8): 1311-1332.

    CLP Journals

    [1] Ren Wenhe, Song Xiaoquan, Wang Fanghan. Spatiotemporal distribution of aerosols in East China Seas based on spaceborne lidar[J]. Infrared and Laser Engineering, 2018, 47(12): 1230002

    [2] Zheng Yongchao, Wang Yuzhao, Yue Chunyu. Technical and application development study of space-borne atmospheric environment observation lidar[J]. Infrared and Laser Engineering, 2018, 47(3): 302002

    Liu Bingyi, Zhuang Quanfeng, Qin Shengguang, Wu Songhua, Liu Jintao. Aerosol classification method based on high spectral resolution lidar[J]. Infrared and Laser Engineering, 2017, 46(4): 411001
    Download Citation