• Journal of Advanced Dielectrics
  • Vol. 13, Issue 3, 2243001 (2023)
Yingzhuo Lun1, Jiaqian Kang1, Wenfu Zhu1, Jianming Deng1、2, Xingan Jiang1, Cheng Zhu3, Qi Ren1, Xian Zi1, Ziyan Gao1, Tianlong Xia4, Zishuo Yao5, Xueyun Wang1、*, and Jiawang Hong1、**
Author Affiliations
  • 1School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
  • 2Guangdong Provincial Key Laboratory of Electronic Functional Materials and Devices, Huizhou University, Huizhou, Guangdong 516007, P. R. China
  • 3Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, P. R. China
  • 4Beijing Key Laboratory of Optoelectronic Functional Materials & Micro-nano Devices, Department of Physics, Renmin University of China, Beijing 100872, P. R. China
  • 5School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
  • show less
    DOI: 10.1142/S2010135X22430019 Cite this Article
    Yingzhuo Lun, Jiaqian Kang, Wenfu Zhu, Jianming Deng, Xingan Jiang, Cheng Zhu, Qi Ren, Xian Zi, Ziyan Gao, Tianlong Xia, Zishuo Yao, Xueyun Wang, Jiawang Hong. Stable large-area monodomain in as-grown bulk ferroelectric single crystal Sn2P2S6[J]. Journal of Advanced Dielectrics, 2023, 13(3): 2243001 Copy Citation Text show less
    References

    [1] High energy-storage properties of Bi0.5Na0.5TiO3-BaTiO3-SrTi0.875Nb0.1O3 lead-free relaxor ferroelectrics. J. Mater. Sci. Technol., 34, 2371(2018).

    [2] Ferroelectric-field-effect-enhanced electroresistance in metal/ferroelectric/semiconductor tunnel junctions. Nat. Mater., 12, 617(2013).

    [3] et?alLogic and in-memory computing achieved in a single ferroelectric semiconductor transistor. Sci. Bull., 66, 2288(2021).

    [4] High visible light photocatalytic activities obtained by integrating g-C3N4 with ferroelectric PbTiO3. J. Mater. Sci. Technol., 74, 128(2021).

    [5] et?alFlexoelectricity in dielectrics: Materials, structures and characterizations. J. Adv. Dielect., 8, 1830002(2018).

    [6] Optical and photoelectric spectroscopy of photorefractive Sn2P2S6 crystals. J. Phys. Condens. Matter., 18, 5323(2006).

    [7] et?alEnhanced domain wall conductivity in photosensitive ferroelectrics Sn2P2S6 with full visible spectrum absorption. Sci. China Mater., 65, 1049(2021).

    [8] et?alElectro-optical properties of Sn2P2S6. Opt. Commun., 215, 333(2003).

    [9] et?alHigh-frame-rate joint Fourier-transform correlator based on Sn2P2S6 crystal. Opt. Lett., 26, 1666(2001).

    [10] Fast dynamic waveguides and waveguide arrays in photorefractive Sn2P2S6 crystal induced by visible light. Opt. Exp., 17, 379(2009).

    [11] Domain wall nanoelectronics. Rev. Mod. Phys., 84, 119(2012).

    [12] et?alDomain-wall engineering and topological defects in ferroelectric and ferroelastic materials. Nat. Rev. Phys., 2, 634(2020).

    [13] The evolution of multiferroics. Nat. Rev. Mater., 1, 16046(2016).

    [14] Non-volatile holographic storage in doubly doped lithium niobate crystals. Nature, 393, 665(1998).

    [15] et?alEpitaxial ferroelectric oxide thin films for optical applications. Appl. Phys. Rev., 5, 041108(2018).

    [16] . Perspectives in Theoretical Physics(1992).

    [17] Theory of the structure of ferromagnetic domains in films and small particles. Phys. Rev., 70, 965(1946).

    [18] Domain structure of rochelle salt and KH2PO4. Phys. Rev., 90, 193(1953).

    [19] et?alScaling of domain periodicity with thickness measured in BaTiO3 single crystal lamellae and comparison with other ferroics. Phys. Rev. B, 74, 024115(2006).

    [20] et?alObservation of nanoscale 180∘ stripe domains in ferroelectric PbTiO3 thin films. Phys. Rev. Lett., 89, 067601(2002).

    [21] Nanoscale magnetic domain structures in epitaxial cobalt films. Phys. Rev. B, 54, 3428(1996).

    [22] et?alThickness scaling of ferroelastic domains in PbTiO3 films on DyScO3. Appl. Phys. Lett., 103, 142901(2013).

    [23] et?alThickness dependence of domain size in 2D ferroelectric CuInP2S6 nanoflakes. AIP Adv., 9, 115211(2019).

    [24] et?alPositive effect of an internal depolarization field in ultrathin epitaxial ferroelectric films. Adv. Electron. Mater., 2, 1500288(2016).

    [25] et?alStabilization of monodomain polarization in ultrathin PbTiO3 films. Phys. Rev. Lett., 96, 127601(2006).

    [26] Tuning of the depolarization field and nanodomain structure in ferroelectric thin films. Nano Lett., 14, 4205(2014).

    [27] et?alSuper switching and control of in-plane ferroelectric nanodomains in strained thin films. Nat. Commun., 5, 4415(2014).

    [28] et?alGiant flexoelectric effect in ferroelectric epitaxial thin films. Phys. Rev. Lett., 107, 057602(2011).

    [29] Ferroelectric stripe domains in PbTiO3 thin films: Depolarization field and domain randomness. J. Appl. Phys., 104, 064109(2008).

    [30] Light-induced electric conductivity in Sn2P2S6. Ferroelectrics, 192, 155(1997).

    [31] et?alAbove-bandgap voltages from ferroelectric photovoltaic devices. Nat. Nanotechnol., 5, 143(2010).

    [32] et?alInternal-field-enhanced charge separation in a single-domain ferroelectric PbTiO3 photocatalyst. Adv. Mater., 32, 1906513(2020).

    [33] Domain formation in thin ferroelectric films: The role of depolarization energy. Ferroelectrics, 202, 267(1997).

    [34] Nanoferroelectrics: Statics and dynamics. J. Phys. Condens. Mat., 18, R361(2006).

    [35] et?alLow trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science, 347, 519(2015).

    [36] Optical determination of the charge carrier mobility in Sn2P2S6. Appl. Phys. Lett., 109, 182104(2016).

    Yingzhuo Lun, Jiaqian Kang, Wenfu Zhu, Jianming Deng, Xingan Jiang, Cheng Zhu, Qi Ren, Xian Zi, Ziyan Gao, Tianlong Xia, Zishuo Yao, Xueyun Wang, Jiawang Hong. Stable large-area monodomain in as-grown bulk ferroelectric single crystal Sn2P2S6[J]. Journal of Advanced Dielectrics, 2023, 13(3): 2243001
    Download Citation