• Laser & Optoelectronics Progress
  • Vol. 58, Issue 1, 114006 (2021)
Yao Yansheng1、2、*, Tang Jianping1、3, Wang Jun1, Ge Zhangsen1、3, and Zhang Chenglin1、3、4
Author Affiliations
  • 1School of Mechanical and Electrical Engineering, Anhui Jianzhu University, Hefei, Anhui 230601, China
  • 2Key Laboratory of Intelligent Manufacturing of Construction Machinery, Hefei, Anhui 230601, China
  • 3School of Engineering Science, University of Science and Technology of China, Hefei, Anhui 230027, China
  • 4Anhui Tuobao Additive Manufacturing Technology Co., Ltd., Wuhu, Anhui 241200, China
  • show less
    DOI: 10.3788/LOP202158.0114006 Cite this Article Set citation alerts
    Yao Yansheng, Tang Jianping, Wang Jun, Ge Zhangsen, Zhang Chenglin. Forming Technology and Properties of 316L Stainless Steel by Selective Laser Melting[J]. Laser & Optoelectronics Progress, 2021, 58(1): 114006 Copy Citation Text show less
    References

    [1] Wu K, Zhang J L, Wu B et al. Research and development of Ni-based superalloy fabricated by laser additive manufacturing technology[J]. Journal of Iron and Steel Research, 29, 953-959(2017).

    [2] Yang Y Q, Chen J, Song C H et al. Current status and progress on technology of selective laser melting of metal parts[J]. Laser & Optoelectronics Progress, 55, 011401(2018).

    [3] Wang H M. Materials' fundamental issues of laser additive manufacturing for high-performance large metallic components[J]. Acta Aeronautica et Astronautica Sinica, 35, 2690-2698(2014).

    [4] Zhang L C, Attar H, Calin M et al. Review on manufacture by selective laser melting and properties of titanium based materials for biomedical applications[J]. Materials Technology, 31, 66-76(2016). http://www.tandfonline.com/doi/abs/10.1179/1753555715Y.0000000076

    [5] Wu W H, Zhang L, He B B et al. Current status of research on computer simulation of selective laser melting additive manufacturing process[J]. Physical Testing and Chemical Analysis (Part A:Physical Testing), 52, 693-697(2016).

    [6] Wang Y Q, Shen J X, Wu H Q. Application and research status of alternative materials for 3D-printing technology[J]. Journal of Aeronautical Materials, 36, 89-98(2016).

    [7] Rosa B, Mognol P, Hascoët J Y. Laser polishing of additive laser manufacturing surfaces[J]. Journal of Laser Applications, 27, S29102(2015).

    [8] Xu J G, Chen Y, Chen H et al. Influence of process parameters on forming defects of H13 steel processed by selective laser melting[J]. Laser & Optoelectronics Progress, 55, 041405(2018).

    [9] Niu X M, Shen H Y, Fu J Z. Microstructure and mechanical properties of selective laser melted Mg-9 wt%Al powder mixture[J]. Materials Letters, 221, 4-7(2018).

    [10] Zhuo L R, Song B, Zhang Y J et al. Study on CuZnAl memory alloy fabricated by selective laser melting[J]. Journal of Mechanical Engineering, 55, 24-30(2019).

    [11] Di O Y, Ning L, Lin L. Structural heterogeneity in 3D printed Zr-based bulk metallic glass by selective laser melting[J]. Journal of Alloys and Compounds, 740, 603-609(2018).

    [12] Yang X Q, Liu Y, Ye J W et al. Enhanced mechanical properties and formability of 316L stainless steel materials 3D-printed using selective laser melting[J]. International Journal of Minerals, Metallurgy and Materials, 26, 1396-1404(2019). http://www.cnki.com.cn/Article/CJFDTotal-BJKY201911006.htm

    [13] Li R D, Liu J H, Shi Y S et al. 316L stainless steel with gradient porosity fabricated by selective laser melting[J]. Journal of Materials Engineering and Performance, 19, 666-671(2010). http://link.springer.com/article/10.1007/s11665-009-9535-2

    [14] Wu W H, Yang Y Q, Xiao D M et al. Pore forming results of controllable ultra-light structured parts by selective laser melting[J]. Optics and Precision Engineering, 25, 1547-1556(2017).

    [15] Gümrük R. Mines R A W. Compressive behaviour of stainless steel micro-lattice structures[J]. International Journal of Mechanical Sciences, 68, 125-139(2013). http://www.sciencedirect.com/science/article/pii/S0020740313000118

    [16] Yadroitsev I, Shishkovsky I, Bertrand P et al. Manufacturing of fine-structured 3D porous filter elements by selective laser melting[J]. Applied Surface Science, 255, 5523-5527(2009). http://www.sciencedirect.com/science/article/pii/S0169433208017893

    [17] Ma Y Y, Liu Y D, Shi W T et al. Effect of scanning speed on forming defects and properties of selective laser melted 316L stainless steel powder[J]. Laser & Optoelectronics Progress, 56, 101403(2019).

    [18] Bian P Y. Effect of heat treatment on residual stress and microstructure of 316L stainless steel powder formed by selective laser melting[J]. Transactions of Materials and Heat Treatment, 40, 90-97(2019).

    [19] Yadollahi A, Shamsaei N, Thompson S M et al. Effects of process time interval and heat treatment on the mechanical and microstructural properties of direct laser deposited 316L stainless steel[J]. Materials Science and Engineering A, 644, 171-183(2015). http://smartsearch.nstl.gov.cn/paper_detail.html?id=a339d8f8e1b7783e01e86729a396b5bf

    [20] Pan A Q, Zhang H, Wang Z M. Process parameters and microstructure of Ni-based single crystal superalloy processed by selective laser melting[J]. Chinese Journal of Lasers, 46, 1102007(2019).

    [21] Wang D, Wu S B, Fu F et al. Mechanisms and characteristics of spatter generation in SLM processing and its effect on the properties[J]. Materials & Design, 117, 121-130(2017).

    [22] Zhu Y T, Du K P, Shen J et al. The study of the influences of laser energy density to the properties of SLM products and its mechanism[J]. Thermal Spray Technology, 9, 35-41(2017).

    [23] Zong X W, Gao Q, Zhou H Z et al. Effects of bulk laser energy density on anisotropy of selective laser sintered 316L stainless steel[J]. Chinese Journal of Lasers, 46, 0502003(2019).

    [24] Zhou W Q, Han C F, Sun Y F. Effects of solid solution treatment on microstructure and corrosion behavior of high nitrogen austenitic stainless steels[J]. Foundry, 67, 516-520(2018).

    Yao Yansheng, Tang Jianping, Wang Jun, Ge Zhangsen, Zhang Chenglin. Forming Technology and Properties of 316L Stainless Steel by Selective Laser Melting[J]. Laser & Optoelectronics Progress, 2021, 58(1): 114006
    Download Citation