• Journal of Inorganic Materials
  • Vol. 35, Issue 2, 145 (2020)
Li-Na MA1, Chuan SHI2, Ning ZHAO2, Zhi-Jie BI2, Xiang-Xin GUO2、*, and Yu-Dong HUANG3
Author Affiliations
  • 1College of Chemistry & Chemical Engineering, Qingdao University, Qingdao 266071, China
  • 2College of Physical Sciences, Qingdao University, Qingdao 266071, China
  • 3School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
  • show less
    DOI: 10.15541/jim20190108 Cite this Article
    Li-Na MA, Chuan SHI, Ning ZHAO, Zhi-Jie BI, Xiang-Xin GUO, Yu-Dong HUANG. Bacterial Cellulose Based Nano-biomaterials for Energy Storage Applications[J]. Journal of Inorganic Materials, 2020, 35(2): 145 Copy Citation Text show less
    (a) Photograph of the production line for BC[3]; (b) Schematic model of the plant cellulose fibrils (left) and the BC microfibers (right)[5]; (c) Photograph of BC slice; (d) SEM and (e)TEM images of BC[4]
    1. (a) Photograph of the production line for BC[3]; (b) Schematic model of the plant cellulose fibrils (left) and the BC microfibers (right)[5]; (c) Photograph of BC slice; (d) SEM and (e)TEM images of BC[4]
    (a) Schematic diagram for asymmetric supercapacitor device; (b) TEM images, (c) GCD curves, (d) specific capacitance and (e) cycle performance of N-CNF/MnO2[12]
    2. (a) Schematic diagram for asymmetric supercapacitor device; (b) TEM images, (c) GCD curves, (d) specific capacitance and (e) cycle performance of N-CNF/MnO2[12]
    (a) Fabrication process of heteroatom-doped CNF; (b) Elemental mapping images of C, N, P, and O for N, P-CNF; (c) CV curves, (d) GCD curves and (e) cycling stability test of N,P-CNF supercapacitor[2]
    3. (a) Fabrication process of heteroatom-doped CNF; (b) Elemental mapping images of C, N, P, and O for N, P-CNF; (c) CV curves, (d) GCD curves and (e) cycling stability test of N,P-CNF supercapacitor[2]
    (a) Synthesis scheme of PPY/BC/GO composites; SEM images of (b) pristine GO, (c) cross-linked BC/GO, (d) a single layer and (e) multilayers of PPY/BC/GO hybrid, and (f) PPY/BC core-sheath hybrid[38]
    4. (a) Synthesis scheme of PPY/BC/GO composites; SEM images of (b) pristine GO, (c) cross-linked BC/GO, (d) a single layer and (e) multilayers of PPY/BC/GO hybrid, and (f) PPY/BC core-sheath hybrid[38]
    Photographs of (a) BC paper and (b) flexible CNT/BC paper; (c) Cross-sectional image of CNT/BC paper; (d) GCD curve and (e) CV curves for CNT/BC/ion gel flexible supercapacitors; (f) Photograph of a LED turned on by the flexible supercapacitors[41]
    5. Photographs of (a) BC paper and (b) flexible CNT/BC paper; (c) Cross-sectional image of CNT/BC paper; (d) GCD curve and (e) CV curves for CNT/BC/ion gel flexible supercapacitors; (f) Photograph of a LED turned on by the flexible supercapacitors[41]
    (a) Photographs of CNT/BC paper and PANI/CNT/BC paper; (b) SEM image and (c) CV curves of PANI/CNT/BC electrode; (d) Schematic structure, (e) digital images and (f) CV curves for flexible supercapacitor[1]
    6. (a) Photographs of CNT/BC paper and PANI/CNT/BC paper; (b) SEM image and (c) CV curves of PANI/CNT/BC electrode; (d) Schematic structure, (e) digital images and (f) CV curves for flexible supercapacitor[1]
    (a) SEM and (b) TEM images of Ni(OH)2/RGO/BC; (c, d) Cross-sectional SEM micrographs of Ni(OH)2/RGO/BC; (e) CV and (f) GCD curves of Ni(OH)2/RGO/BC electrode[58]
    7. (a) SEM and (b) TEM images of Ni(OH)2/RGO/BC; (c, d) Cross-sectional SEM micrographs of Ni(OH)2/RGO/BC; (e) CV and (f) GCD curves of Ni(OH)2/RGO/BC electrode[58]
    MaterialFunction of BCPotential window/VCapacitance/(F∙g-1)Rate capabilityStability(cycle number)Highest energy density/(Wh∙kg-1)Highest powerdensity/(kW∙kg-1)Ref.
    CO2 activated CNFActive material-0.2-0.2(vs. Ag/AgCl)42 (1 mV∙s-1)(659 mF∙cm-2)70% (10 mV∙s-1)[14]
    CNFActive material-1-0(vs. Ag/AgCl)108 (2 A∙g-1)[15]
    PCN/CNFActive material-1-0(vs. Hg/HgO)261 (2 mV∙s-1)76.6 (500 mV∙s-1)97.6% (10000)[18]
    PCN/CNF//PCN/CNFActive material0-1.894.8% (10000)20.417.8[18]
    N,P-CNF//N,P-CNFActive material0-1204.9(1 A∙g-1)100% (4000)7.7626.1[2]
    N-S-CNF-700Active material0-1(vs. Ag/AgCl)171.2(0.5 A∙g-1)105.2 (10 A∙g-1)>90% (1000)[20]
    KOH activated N-CNFActive material0.9-0.1(vs. SHE)296 (2 mV∙s-1)75% (500 mV∙s-1)99% (10000)[12]
    N-CNFActive material-1-0(vs. Ag/AgCl)120 (1 A∙g-1)98.2% (5000)[13]
    N,P-CNWsActive material-1-0(vs. Hg/HgO)258 (1 A∙g-1)208 (10 A∙g-1)98% (30000)[26]
    N,P-CNWs//N,P-CNWsActive material0-174 (0.5 A∙g-1)87% (6000)5.40.2[26]
    CNF aerogelsActive material-1-0(vs. Ag/AgCl)194.7 (0.5 A∙g-1)108.7(10 A∙g-1)94% (5000)[19]
    Table 1. BC-based carbon material electrodes for supercapacitor
    MaterialFunction of BCPotential window/VCapacitance/(F∙g-1)Rate capabilityStability (cycle number)Highest energy density/(Wh∙kg-1)Highest powerdensity/(kW∙kg-1)Ref.
    CNF@MnO2Active material0-1(vs. Ag/AgCl)254.64 (1 A∙g-1)77.53% (10 A∙g-1)[24]
    CNF@MnO2//N-CNFActive material0-295.4% (2000)32.91284.63[24]
    Ni3S2/CNFActive material0-0.6(vs. Ag/AgCl)957 (1 A∙g-1)703 (8 A∙g-1)16.5% (1000)[15]
    Ni3S2/CNF//CNFActive material0-1.756.6 (1 A∙g-1)35.4 (10 A∙g-1)97% (2500)25.80.425[15]
    CNF/MnO2Active material0.15-1.15(vs. SCE)273 (2 mV∙s-1)75% (100 mV∙s-1)[12]
    CNF//CNF/MnO2Active material0-2113 (20 mV∙s-1)53%(10~200 mV∙s-1)92% (5000)638[12]
    N-CNF@LDHActive material0-0.5(Ag/AgCl)1949.5 (1 A∙g-1)54.7 (10 A∙g-1)74.4% (5000)[23]
    N-CNF@LDH//N-CNFActive material0-1.6101.9 (1 A∙g-1)63.8 (10 A∙g-1)89.3% (2500)36.38[23]
    Table 2. BC-based composites electrodes for supercapacitor
    MaterialFunction of BCPotential window/VCapacitance/(mF∙cm-2)Capacitance/(F∙g-1)Rate capabilityStability (cycle number)Highest energy densityHighest powerdensityRef.
    N-CNF/RGO/BCActive material & substrate-0.8-0.2(vs. Hg/HgO)2106(1 mV∙s-1)26376%(50 mV∙s-1)100% (2×104)[45]
    N-CNF/RGO/BC//N-CNF/RGO/BCActive material & substrate0-1810(2 mV∙s-1)755(50 mV∙s-1)99.6% (104)0.11 mWh∙cm-227mW∙cm-2[46]
    N,P-CNF/RGO/BCActive material & substrate-0.8-0.2(vs. Hg/HgO)1900(2 mV∙s-1)244.81554(50 mV∙s-1)100% (2×104)[16]
    N,P-CNF/RGO/BC//N,P-CNF/RGO/BCActive material & substrate0-1690(2 mV∙s-1)620(40 mV∙s-1)99.6% (1×104)0.096mWh∙cm-219.98mW∙cm-2[16]
    BC/GO electrodeScaffold-0.2-0.8(vs. SCE)160 (0.4 A∙g-1)68(2 A∙g-1)90.3% (2×103)[44]
    BC/CNT/ion gel supercapacitorsSubstrate0-318.8(100 mV∙s-1)46.942.0(500 mV∙s-1)99.5% (5×104)15.5Wh∙kg-11.5kW∙kg-1[41]
    a-CNF//BC gel//a-CNF supercapacitorsActive material & electrolyte & separator0-1289(0.1 mA∙cm-2)70%(10 mA∙cm-2)66.7% (100)[60]
    Table 3. BC-based electrodes for flexible EDLCs
    Li-Na MA, Chuan SHI, Ning ZHAO, Zhi-Jie BI, Xiang-Xin GUO, Yu-Dong HUANG. Bacterial Cellulose Based Nano-biomaterials for Energy Storage Applications[J]. Journal of Inorganic Materials, 2020, 35(2): 145
    Download Citation