• Journal of Innovative Optical Health Sciences
  • Vol. 16, Issue 1, 2245002 (2023)
Weitong Li1、1、2, Mengfei Du1、1、2, Yi Chen1、1、2, Haolin Wang1、1、2, Linzhi Su1、1、2、*, Huangjian Yi1、1, Fengjun Zhao1、1, Kang Li1、1、2, Lin Wang, and Xin Cao1、1、2、**
Author Affiliations
  • 1School of Information Science and Technology, Northwest University, Xi’an, Shaanxi 710127, P. R. China
  • 1Xi’an University of Technology, Xi’an, Shaanxi 710127, P. R. China
  • 2National and Local Joint Engineering Research Center for Cultural Heritage Digitization, Xi’an, Shaanxi 710127, P. R. China
  • show less
    DOI: 10.1142/S179354582245002X Cite this Article
    Weitong Li, Mengfei Du, Yi Chen, Haolin Wang, Linzhi Su, Huangjian Yi, Fengjun Zhao, Kang Li, Lin Wang, Xin Cao. GCR-Net: 3D Graph convolution-based residual network for robust reconstruction in cerenkov luminescence tomography[J]. Journal of Innovative Optical Health Sciences, 2023, 16(1): 2245002 Copy Citation Text show less
    References

    [1] R. Robertson, M. S. Germanos, C. Li, G. S. Mitchell, S. R. Cherry, M. D. Silva. Optical imaging of Cerenkov light generation from positron-emitting radiotracers. Phys. Med. Biol., 54, N355-N365(2009).

    [2] C. Qin, J. Zhong, Z. Hu, X. Yang, J. Tian. Recent advances in Cerenkov luminescence and tomography imaging. IEEE J. Sel. Top. Quantum Electron., 18, 1084-1093(2012).

    [3] J. C. Park, G. Il An, S. I. Park, J. Oh, H. J. Kim, Y. Su Ha, E. K. Wang, K. Min Kim, J. Y. Kim, J. Lee, M. J. Welch, J. Yoo. Luminescence imaging using radionuclides: A potential application in molecular imaging. Nucl. Med. Biol., 38, 321-329(2011).

    [4] A. E. Spinelli, F. Boschi. Novel biomedical applications of Cerenkov radiation and radioluminescence imaging. Phys. Med., 31, 120-129(2015).

    [5] T. Song, X. Liu, Y. Qu, H. Liu, C. Bao, C. Leng, Z. Hu, K. Wang, J. Tian. A novel endoscopic Cerenkov luminescence imaging system for intraoperative surgical navigation. Mol. Imag., 14, 443-449(2015).

    [6] J. Axelsson, J. Krohn. Cerenkov luminescence imaging for accurate placement of radioactive plaques in episcleral brachytherapy of intraocular tumors. Invest. Ophthalmol. Vis. Sci., 56, 7362-7368(2015).

    [7] Z. Hu, Y. Qu, K. Wang, X. Zhang, J. Zha, T. Song, C. Bao, H. Liu, Z. Wang, J. Wang, Z. Liu, H. Liu, J. Tian. In vivo nanoparticle-mediated radiopharmaceutical-excited fluorescence molecular imaging. Nat. Commun., 6, 7560(2015).

    [8] Z. Zhang, M. Cai, C. Bao, Z. Hu, J. Tian. Endoscopic Cerenkov luminescence imaging and image-guided tumor resection on hepatocellular carcinoma-bearing mouse models. Nanomedicine, 17, 62-70(2019).

    [9] Y. Xu, E. Chang, H. Liu, H. Jiang, S. S. Gambhir, Z. Cheng. Proof-of-concept study of monitoring cancer drug therapy with cerenkov luminescence imaging. J. Nucl. Med., 53, 312-317(2012).

    [10] D. L. Thorek, A. Ogirala, B. J. Beattie, J. Grimm. Quantitative imaging of disease signatures through radioactive decay signal conversion. Nat. Med., 19, 1345-1350(2013).

    [11] X. Cao, Y. Zhan, X. Cao, J. Liang, X. Chen. Harnessing the power of Cerenkov luminescence imaging for gastroenterology: Cerenkov luminescence endoscopy. Curr. Med. Imag. Rev., 13, 50-57(2017).

    [12] X. Cao, X. Chen, F. Kang, Y. Lin, M. Liu, H. Hu, Y. Nie, K. Wu, J. Wang, J. Liang, J. Tian. Performance evaluation of endoscopic Cerenkov luminescence imaging system: In vitro and pseudotumor studies. Biomed. Opt. Exp., 5, 3660-3670(2014).

    [13] D. Fan, X. Zhang, L. Zhong, X. Liu, Y. Sun, H. Zhao, B. Jia, Z. Liu, Z. Zhu, J. Shi, F. Wang. (68)Ga-labeled 3PRGD2 for dual PET and Cerenkov luminescence imaging of orthotopic human glioblastoma. Bioconjug. Chem., 26, 1054-1060(2015).

    [14] X. Cao, X. Chen, F. Kang, X. Cao, Y. Zhan, J. Wang, K. Wu, J. Liang. Sensitivity improvement of Cerenkov luminescence endoscope with terbium doped Gd2O2S nanoparticles. Appl. Phys. Lett., 106, 4(2015).

    [15] H. Chen, K. Shou, S. Chen, C. Qu, Z. Wang, L. Jiang, M. Zhu, B. Ding, K. Qian, A. Ji. Smart self-assembly amphiphilic cyclopeptide-dye for near-infrared window-II imaging. Adv. Mater., 33, 2006902(2021).

    [16] C. Li, G. S. Mitchell, S. R. Cherry. Cerenkov luminescence tomography for small-animal imaging. Opt. Lett., 35, 1109-1111(2010).

    [17] Q. Zhang, H. Zhao, D. Chen, X. Qu, X. Chen, X. He, W. Li, Z. Hu, J. Liu, J. Liang, J. Tian. Source sparsity based primal-dual interior-point method for three-dimensional bioluminescence tomography. Opt. Commun., 284, 5871-5876(2011).

    [18] H. Guo, Z. Hu, X. He, X. Zhang, M. Liu, Z. Zhang, X. Shi, S. Zheng, J. Tian. Non-convex sparse regularization approach framework for high multiple-source resolution in cerenkov luminescence tomography. Opt. Exp., 25, 28068-28085(2017).

    [19] H. Guo, J. Yu, Z. Hu, H. Yi, Y. Hou, X. He. A hybrid clustering algorithm for multiple-source resolving in bioluminescence tomography. J. Biophoton., 11, e201700056(2018).

    [20] W. Cong, G. Wang, D. Kumar, Y. Liu, M. Jiang, L. Wang, E. Hoffman, G. McLennan, P. McCray, J. Zabner, A. Cong. Practical reconstruction method for bioluminescence tomography. Opt. Exp., 13, 6756-6771(2005).

    [21] M. A. Naser, M. S. Patterson. Bioluminescence tomography using eigenvectors expansion and iterative solution for the optimized permissible source region. Biomed. Opt. Exp., 2, 3179-3193(2011).

    [22] M. A. Naser, M. S. Patterson. Improved bioluminescence and fluorescence reconstruction algorithms using diffuse optical tomography, normalized data, and optimized selection of the permissible source region. Biomed. Opt. Exp., 2, 169-184(2010).

    [23] J. Liu, Y. Wang, X. Qu, X. Li, X. Ma, R. Han, Z. Hu, X. Chen, D. Sun, R. Zhang, D. Chen, D. Chen, X. Chen, J. Liang, F. Cao, J. Tian. In vivo quantitative bioluminescence tomography using heterogeneous and homogeneous mouse models. Opt Exp., 18, 13102-13113(2010).

    [24] C. Qin, S. Zhu, J. Feng, J. Zhong, X. Ma, P. Wu, J. Tian. Comparison of permissible source region and multispectral data using efficient bioluminescence tomography method. J. Biophoton., 4, 824-839(2011).

    [25] J. Feng, K. Jia, G. Yan, S. Zhu, C. Qin, Y. Lv, J. Tian. An optimal permissible source region strategy for multispectral bioluminescence tomography. Opt. Exp., 16, 15640-15654(2008).

    [26] Z. Hu, X. Chen, J. Liang, X. Qu, D. Chen, W. Yang, J. Wang, F. Cao, J. Tian. Single photon emission computed tomography-guided Cerenkov luminescence tomography. J. Appl. Phys., 112, 024703(2012).

    [27] K. Liu, Y. Lu, J. Tian, C. Qin, X. Yang, S. Zhu, X. Yang, Q. Gao, D. Han. Evaluation of the simplified spherical harmonics approximation in bioluminescence tomography through heterogeneous mouse models. Opt. Exp., 18, 20988-21002(2010).

    [28] J. Dutta, S. Ahn, C. Li, S. R. Cherry, R. M. Leahy. Joint L1 and total variation regularization for fluorescence molecular tomography. Phys. Med. Biol., 57, 1459(2012).

    [29] K. Liu, J. Tian, C. Qin, X. Yang, D. Han, P. Wu, S. Zhu. Tomographic bioluminescence imaging reconstruction via a dynamically sparse regularized global method in mouse models. J. Biomed. Opt., 16, 046016(2011).

    [30] M. Cai, Z. Zhang, X. Shi, J. Yang, Z. Hu, J. Tian. Non-negative iterative convex refinement approach for accurate and robust reconstruction in Cerenkov luminescence tomography. IEEE Trans. Med. Imag, 39, 3207(2020).

    [31] J. Zhong, J. Tian, X. Yang, C. Qin. Whole-body Cerenkov luminescence tomography with the finite element SP(3) method. Ann Biomed. Eng., 39, 1728-1735(2011).

    [32] Z. Hu, X. Ma, X. Qu, W. Yang, J. Liang, J. Wang, J. Tian. Three-dimensional noninvasive monitoring iodine-131 uptake in the thyroid using a modified Cerenkov luminescence tomography approach. PLoS One, 7, e37623(2012).

    [33] H. Liu, X. Yang, T. Song, C. Bao, L. Shi, Z. Hu, K. Wang, J. Tian. Multispectral hybrid Cerenkov luminescence tomography based on the finite element SPn method. J. Biomed. Opt., 20, 86007(2015).

    [34] A. E. Spinelli, C. Kuo, B. W. Rice, R. Calandrino, P. Marzola, A. Sbarbati, F. Boschi. Multispectral Cerenkov luminescence tomography for small animal optical imaging. Opt. Exp., 19, 12605-12618(2011).

    [35] Z. Zhang, M. Cai, Y. Gao, X. Shi, X. Zhang, Z. Hu, J. Tian. A novel Cerenkov luminescence tomography approach using multilayer fully connected neural network. Phys. Med. Biol., 64, 245010(2019).

    [36] X. Cao, X. Wei, F. Yan, L. Wang, L. Su, Y. Hou, G. Geng, X. He. A novel stacked denoising autoencoder-based reconstruction framework for Cerenkov luminescence tomography. IEEE Access, 7, 85178-85189(2019).

    [37] X. Zhang, M. Cai, L. Guo, Z. Zhang, B. Shen, X. Zhang, Z. Hu, J. Tian. Attention mechanism-based locally connected network for accurate and stable reconstruction in Cerenkov luminescence tomography. Biomed. Opt. Exp., 12, 7703-7716(2021).

    [38] H. Meng, Y. Gao, X. Yang, K. Wang, J. Tian. K-nearest neighbor based locally connected network for fast morphological reconstruction in fluorescence molecular tomography. IEEE Trans. Med. Imaging, 39, 3019-3028(2020).

    [39] J. Yu, C. Dai, X. He, H. Guo, S. Sun, Y. Liu. Bioluminescence tomography based on one-dimensional convolutional neural networks. Fron. Oncol., 11, 760689(2021).

    [40] A. D. Klose. The forward and inverse problem in tissue optics based on the radiative transfer equation: A brief review. J. Quant. Spectrosc. Radiat. Transf., 111, 1852-1853(2010).

    [41] W. Cai, M. Xu, R. Alfano. Three-dimensional radiative transfer tomography for turbid media. IEEE J. Sel. Top. Quantum Electron., 9, 189-198(2003).

    [42] C. Qin, J. Feng, S. Zhu, X. Ma, J. Zhong, P. Wu, Z. Jin, J. Tian. Recent advances in bioluminescence tomography: Methodology and system as well as application. Laser Photon. Rev., 8, 94-114(2014).

    [43] Y. Wang, Y. Sun, Z. Liu, S. E. Sarma, M. M. Bronstein, J. M. Solomon. Dynamic graph cnn for learning on point clouds. ACM Trans. Graph., 38, 1-12(2019).

    [44] X. Cao, J. Zhang, J. Yang, C. Fan, F. Zhao, W. Zhou, L. Wang, G. Geng, M. Zhou, X. Chen. A deep unsupervised clustering-based post-processing framework for high-fidelity Cerenkov luminescence tomography. J. Appl. Phys., 128, 193104(2020).

    [45] B. Parvitte, C. Risser, R. Vallon, V. Zéninari. Quantitative simulation of photoacoustic signals using finite element modelling software. Appl. Phys. B, 111, 383-389(2013).

    [46] S. Ren, X. Chen, H. Wang, X. Qu, G. Wang, J. Liang, J. Tian. Molecular optical simulation environment (MOSE): A platform for the simulation of light propagation in turbid media. PLoS One, 8, e61304(2013).

    [47] H. Yi, D. Chen, W. Li, S. Zhu, X. Wang, J. Liang, J. Tian. Reconstruction algorithms based on l1-norm and l2-norm for two imaging models of fluorescence molecular tomography: A comparative study. J. Biomed. Opt., 18, 56013(2013).

    Weitong Li, Mengfei Du, Yi Chen, Haolin Wang, Linzhi Su, Huangjian Yi, Fengjun Zhao, Kang Li, Lin Wang, Xin Cao. GCR-Net: 3D Graph convolution-based residual network for robust reconstruction in cerenkov luminescence tomography[J]. Journal of Innovative Optical Health Sciences, 2023, 16(1): 2245002
    Download Citation