• Laser & Optoelectronics Progress
  • Vol. 59, Issue 12, 1234001 (2022)
Haisheng Song1, Zhao Chen1、*, Dacheng Xu2, and Rongwang Xu3
Author Affiliations
  • 1School of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, Gansu , China
  • 2School of Electronic Information, Soochow University, Suzhou 215031, Jiangsu , China
  • 3Kunshan Soohow Instrument Technology Co., Ltd., Suzhou 215300, Jiangsu , China
  • show less
    DOI: 10.3788/LOP202259.1234001 Cite this Article Set citation alerts
    Haisheng Song, Zhao Chen, Dacheng Xu, Rongwang Xu. Prediction of Cr, Mn, and Ni in Medium and Low Alloy Steels by GA-BP Neural Network Combined with EDXRF Technology[J]. Laser & Optoelectronics Progress, 2022, 59(12): 1234001 Copy Citation Text show less
    Structure diagram of BP neural network
    Fig. 1. Structure diagram of BP neural network
    Schematic of background subtraction by two-point method
    Fig. 2. Schematic of background subtraction by two-point method
    Mean square error curve of training process
    Fig. 3. Mean square error curve of training process
    Linear regression results of training process
    Fig. 4. Linear regression results of training process
    Error distributions of analysis results of three elements by GA-BP and FP methods. (a) Cr element; (b) Mn element; (c) Ni element
    Fig. 5. Error distributions of analysis results of three elements by GA-BP and FP methods. (a) Cr element; (b) Mn element; (c) Ni element
    Sample nameCrMnNi
    18CrNiW0.340-1.8300.120-0.7102.680-4.580
    30CrMnSiNiA0.587-1.5920.744-1.6070.971-2.064
    38CrMoAl0.995-2.0280.161-0.6910.069-0.443
    CrWMn0.319-1.3540.172-1.2800.037-0.245
    GSBH40067-930.581-1.9500.216-1.3500.229-2.290
    YSBS15301-940.313-1.5200.292-1.3100.521-3.180
    Table 1. Element content range of experimental samples of various alloy steels
    ParameterNumeric valueParameterNumeric value
    Training sample108×3Output layer Activation functionpurelin
    Test sample36×3Population size45
    Input neuron3Iteration ordinal Number20
    Hidden layer neuron5Learning rate0.1
    Output layer neuron3Training steps1000
    Training functiontrainlmCrossover rate0.2
    Hidden layer Activation functiontansigMutation rate0.0025
    Table 2. Important parameters of GA-BP neural network
    SampleAnalysis methodCrMnNi

    Predicted

    value

    Relative standard

    deviation

    Predicted

    value

    Relative standard

    deviation

    Predicted

    value

    Relative standard

    deviation

    CrWMn1Standard0.3191.2800.037
    FP0.3509.7181.2700.7810.02045.946
    GA-BP0.3303.4481.2850.3910.05754.054
    CrWMn2Standard0.4440.9590.088
    FP0.4400.9010.9204.0670.03065.909
    GA-BP0.4470.6761.0176.0480.15171.591
    CrWMn3Standard0.7630.8830.131
    FP0.7403.0140.9608.7200.07046.565
    GA-BP0.7491.8350.8991.8120.10122.901
    CrWMn4Standard1.0600.3470.191
    FP1.0902.8300.3706.6280.14026.702
    GA-BP1.0731.2260.3799.2220.15120.942
    CrWMn5Standard1.3540.1720.245
    FP1.4507.0900.20016.2790.20018.367
    GA-BP1.3912.7330.14416.2790.2616.531
    Table 3. Prediction results of CrWMn series samples
    Haisheng Song, Zhao Chen, Dacheng Xu, Rongwang Xu. Prediction of Cr, Mn, and Ni in Medium and Low Alloy Steels by GA-BP Neural Network Combined with EDXRF Technology[J]. Laser & Optoelectronics Progress, 2022, 59(12): 1234001
    Download Citation