• Acta Optica Sinica
  • Vol. 39, Issue 11, 1130002 (2019)
Song Ye1、2, Xinzheng Shi1, Shu Li1、2、*, Jiejun Wang1、2, and Xinqiang Wang1、2
Author Affiliations
  • 1School of Electronic Engineering and Automation, Guilin University of Electronic Technology, Guilin, Guangxi 541004, China
  • 2Guangxi Key Laboratory of Optoelectronic Information Processing, Guilin, Guangxi 541004, China
  • show less
    DOI: 10.3788/AOS201939.1130002 Cite this Article Set citation alerts
    Song Ye, Xinzheng Shi, Shu Li, Jiejun Wang, Xinqiang Wang. Study on Prism-Based Spatial Heterodyne Spectrometry[J]. Acta Optica Sinica, 2019, 39(11): 1130002 Copy Citation Text show less
    References

    [1] Dohi T, Suzuki T. Attainment of high resolution holographic Fourier transform spectroscopy[J]. Applied Optics, 10, 1137-1140(1971).

    [2] Harlander J M, Roesler F L, Cardon J G et al. SHIMMER: a spatial heterodyne spectrometer for remote sensing of Earth’ middle atmosphere[J]. Applied Optics, 41, 1343-1352(2002). http://www.ncbi.nlm.nih.gov/pubmed/11900013

    [3] Lin Y L, Shepherd G, Solheim B et al. Introduction to spatial heterodyne observations of water (SHOW) project and its instrument development. [C]∥Proc. XIV Int. TOVS Study Conf., May 25-31, 2005, Beijing, China. [S.l.: s.n.](2005).

    [4] Langille J A, Solheim B, Bourassa A et al. Measurement of water vapor using an imaging field-widened spatial heterodyne spectrometer[J]. Applied Optics, 56, 4297-4308(2017). http://www.ncbi.nlm.nih.gov/pubmed/29047854

    [5] Langille J A, Letros D, Zawada D et al. Spatial Heterodyne Observations of Water (SHOW) vapour in the upper troposphere and lower stratosphere from a high altitude aircraft: modelling and sensitivity analysis[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 209, 137-149(2018). http://www.sciencedirect.com/science/article/pii/S0022407317309196

    [6] Ye S, Fang Y H, Hong J et al. System design of spatial heterodyne spectrometer[J]. Optics and Precision Engineering, 14, 959-964(2006).

    [7] Xiong W, Shi H L, Wang Y J et al. Study on near-infrared spatial heterodyne spectrometer and detection of water vapor[J]. Acta Optica Sinica, 30, 1511-1515(2010).

    [8] Yin S, Feng Y T, Bai Q L et al. Design of compact spatial heterodyne imaging spectrometer[J]. Acta Photonica Sinica, 47, 0312002(2018).

    [9] Cai Q S, Bin X L, Huang M et al. Prototype development and field measurements of high etendue spatial heterodyne imaging spectrometer[J]. Optics Communications, 410, 403-409(2018). http://www.sciencedirect.com/science/article/pii/S0030401817309367

    [10] Feng Y T, Sun J, Li Y et al. Broad-band spatial heterodyne interferometric spectrometer[J]. Optics and Precision Engineering, 23, 48-55(2015).

    [11] Luo H Y, Li S, Shi H L et al. Optical design of imaging system based on spatial heterodyne spectrometer[J]. Infrared and Laser Engineering, 45, 0818005(2016).

    [12] Li Z G. Progress of wavefront-division Fourier transform spectrometry in the vacuum ultraviolet[J]. Chinese Optics, 8, 736-743(2015).

    [13] Wang X Q, Wang H, Ye S et al. Potassium spectrum detection and extraction based on spatial heterodyne[J]. Infrared and Laser Engineering, 48, 0117002(2019).

    [14] Liu Q, Wu J H, Guo P L et al. Fabrication of convex blazed grating with high diffraction efficiency[J]. Chinese Journal of Lasers, 46, 0313001(2019).

    Song Ye, Xinzheng Shi, Shu Li, Jiejun Wang, Xinqiang Wang. Study on Prism-Based Spatial Heterodyne Spectrometry[J]. Acta Optica Sinica, 2019, 39(11): 1130002
    Download Citation