• Photonics Research
  • Vol. 12, Issue 3, 563 (2024)
Minghuan Cui1、†, Chaochao Qin1、4、†, Yuanzhi Jiang2, Shichen Zhang1, Changjiu Sun2, Mingjian Yuan2, Yonggang Yang1、5, and Yufang Liu1、3、*
Author Affiliations
  • 1Henan Key Laboratory of Infrared Materials & Spectrum Measures and Applications, Henan Normal University, Xinxiang 453007, China
  • 2Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071, China
  • 3Institute of Physics, Henan Academy of Sciences, Zhengzhou 450046, China
  • 4e-mail: qinchaochao@htu.edu.cn
  • 5e-mail: yangyonggang@htu.edu.cn
  • show less
    DOI: 10.1364/PRJ.500205 Cite this Article Set citation alerts
    Minghuan Cui, Chaochao Qin, Yuanzhi Jiang, Shichen Zhang, Changjiu Sun, Mingjian Yuan, Yonggang Yang, Yufang Liu. Tuning exciton dynamics by the dielectric confinement effect in quasi-two-dimensional perovskites[J]. Photonics Research, 2024, 12(3): 563 Copy Citation Text show less
    References

    [1] N. Li, X. Niu, L. Li. Liquid medium annealing for fabricating durable perovskite solar cells with improved reproducibility. Science, 373, 561-567(2021).

    [2] L. Wang, H. Zhou, J. Hu. A Eu3+ -Eu2+ ion redox shuttle imparts operational durability to Pb-I perovskite solar cells. Science, 363, 265-270(2019).

    [3] Z. Liu, W. Qiu, X. Peng. Perovskite light-emitting diodes with EQE exceeding 28% through a synergetic dual-additive strategy for defect passivation and nanostructure regulation. Adv. Mater., 33, 2103268(2021).

    [4] X. Liu, W. Xu, S. Bai. Metal halide perovskites for light-emitting diodes. Nat. Mater., 20, 10-21(2021).

    [5] K. Lin, J. Xing, N. Q. Li. Perovskite light-emitting diodes with external quantum efficiency exceeding 20 percent. Nature, 562, 245-248(2018).

    [6] C. Yu, N. Wang, T. He. Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures. Nature, 562, 249-253(2018).

    [7] Y. Hassan, J. H. Park, M. L. Crawford. Ligand-engineered bandgap stability in mixed-halide perovskite LEDs. Nature, 591, 72-77(2021).

    [8] Y. Liu, J. Cui, K. Du. Efficient blue light-emitting diodes based on quantum-confined bromide perovskite nanostructures. Nat. Photonics, 13, 760-764(2019).

    [9] G. Xing, N. Mathews, S. S. Lim. Low-temperature solution-processed wavelength-tunable perovskites for lasing. Nat. Mater., 13, 476-480(2014).

    [10] Q. Zhang, Q. Shang, R. Su. Halide perovskite semiconductor lasers: materials, cavity design, and low threshold. Nano Lett., 21, 1903-1914(2021).

    [11] S. C. Hou, M. K. Gangishetty, Q. M. Quan. Efficient blue and white perovskite light-emitting diodes via manganese doping. Joule, 2, 2421-2433(2018).

    [12] M. K. Gangishetty, S. C. Hou, Q. M. Quan. Reducing architecture limitations for efficient blue perovskite light-emitting diodes. Adv. Mater., 30, 1706226(2018).

    [13] M. Cui, C. Qin, Y. Jiang. Direct observation of competition between amplified spontaneous emission and Auger recombination in quasi-two-dimensional perovskites. J. Phys. Chem. Lett., 11, 5734-5745(2020).

    [14] T. He, S. Li, Y. Jiang. Reduced-dimensional perovskite photovoltaics with homogeneous energy landscape. Nat. Commun., 11, 1672(2020).

    [15] C. T. Zuo, A. Scully, D. Yak. Self-assembled 2D perovskite layers for efficient printable solar cells. Adv. Energy Mater., 9, 1803258(2019).

    [16] M. J. Yuan, L. N. Quan, R. Comin. Perovskite energy funnels for efficient light-emitting diodes. Nat. Nanotechnol., 11, 872-877(2016).

    [17] X. Gong, O. Voznyy, A. Jain. Electron-phonon interaction in efficient perovskite blue emitters. Nat. Mater., 17, 550-556(2018).

    [18] H. H. Tsai, W. Y. Nie, J. C. Blancon. High-efficiency two-dimensional Ruddlesden–Popper perovskite solar cells. Nature, 536, 312-316(2016).

    [19] Y. Zhang, J. Wen, Z. Xu. Effective phase-alignment for 2D halide perovskites incorporating symmetric diammonium ion for photovoltaics. Adv. Sci., 8, 2001433(2021).

    [20] D. Ma, K. Lin, Y. Dong. Distribution control enables efficient reduced-dimensional perovskite LEDs. Nature, 599, 594-598(2021).

    [21] X. Yang, X. Zhang, J. Deng. Efficient green light-emitting diodes based on quasi-two-dimensional composition and phase engineered perovskite with surface passivation. Nat. Commun., 9, 570(2018).

    [22] R. L. Milot, R. J. Sutton, G. E. Eperon. Charge carrier dynamics in 2D hybrid metal halide perovskites. Nano Lett., 16, 7001-7007(2016).

    [23] N. Wang, C. Lu, G. Rui. Perovskite light-emitting diodes based on solution-processed self-organized multiple quantum wells. Nat. Photonics, 10, 699-704(2016).

    [24] C. Qin, T. Matsushima, W. Potscavage. Triplet management for efficient perovskite light-emitting diodes. Nat. Photonics, 14, 70-75(2020).

    [25] M. Kumagai, T. Takagahara. Excitonic and nonlinear-optical properties of dielectric quantum-well structures. Phys. Rev. B, 40, 12359-12381(1989).

    [26] G. Wu, R. Liang, Z. Zhang. 2D hybrid halide perovskites: structure, properties, and applications in solar cells. Small, 17, 2103514(2021).

    [27] Y. Jiang, C. Qin, M. Cui. Spectra stable blue perovskite light-emitting diodes. Nat. Commun., 10, 1868(2019).

    [28] C. Sun, Y. Jiang, M. Cui. High-performance large-area quasi-2D perovskite light-emitting diodes. Nat. Commun., 12, 2207(2021).

    [29] Y. Tian, X. Qian, C. Qin. Modulating low-dimensional domains of self-assembling quasi-2D perovskites for efficient and spectra-stable blue light-emitting diodes. Chem. Eng. J, 415, 129088(2021).

    [30] Y. Jin, Z. Wang, S. Yuan. Synergistic effect of dual ligands on stable blue quasi-2D perovskite light-emitting diodes. Adv. Funct. Mater., 30, 1908339(2020).

    [31] J. T. Lin, C. C. Liao, C. S. Hsu. Harnessing dielectric confinement on tin perovskites to achieve emission quantum yield up to 21. J. Am. Chem. Soc., 141, 10324-10330(2019).

    [32] Y. Jiang, M. Cui, S. Li. Reducing the impact of Auger recombination in quasi-2D perovskite light-emitting diodes. Nat. Commun., 12, 336(2021).

    [33] B. Cheng, T. Y. Li, P. Maity. Extremely reduced dielectric confinement in two-dimensional hybrid perovskites with large polar organics. Commun. Phys., 1, 80(2018).

    [34] J. Yin, P. Maity, R. Naphade. Tuning hot carrier cooling dynamics by dielectric confinement in two-dimensional hybrid perovskite crystals. ACS Nano, 13, 12621-12629(2019).

    [35] R. Su, Z. Xu, J. Wu. Dielectric screening in perovskite photovoltaics. Nat. Commun., 12, 2479(2021).

    [36] C. Song, H. Yang, F. Liu. Ultrafast femtosecond pressure modulation of structure and exciton kinetics in 2D halide perovskites for enhanced light response and stability. Nat. Commun., 12, 4879(2021).

    [37] Q. Du, C. Zhu, Z. Yin. Stacking effects on electron−phonon coupling in layered hybrid perovskites via microstrain manipulation. ACS Nano, 14, 5806-5817(2020).

    [38] W. Tao, C. Zhang, Q. Zhou. Momentarily trapped exciton polaron in two-dimensional lead halide perovskites. Nat. Commun., 12, 1400(2021).

    [39] M. Cui, C. Qin, Z. Zhou. Tuning coherent phonon dynamics in two-dimensional phenylethylammonium lead bromide perovskites. Nano Res., 16, 3408-3414(2023).

    [40] L. N. Quan, Y. Park, P. Guo. Vibrational relaxation dynamics in layered perovskite quantum wells. Proc. Natl. Acad. Sci. USA, 118, e2104425118(2021).

    [41] C. Qin, M. Cui, D. Song. Ultrafast multiexciton Auger recombination of CdSeS. Acta Phys. Sin., 68, 107801(2019).

    [42] K. Zhang, M. Niu, Z. Jiang. Multiple temporal-scale photocarrier dynamics induced by synergistic effects of fluorination and chlorination in highly efficient nonfullerene organic solar cells. Sol. RRL, 4, 1900552(2020).

    [43] X. Hong, T. Ishihara, A. V. Nurmikko. Dielectric confinement effect on excitons in PbI4-based layered semiconductors. Phys. Rev. B, 45, 6961-6964(1992).

    [44] J. Hu, I. W. H. Oswald, S. J. Stuard. Synthetic control over orientational degeneracy of spacer cations enhances solar cell efficiency in two-dimensional perovskites. Nat. Commun., 10, 1276(2019).

    [45] F. Thouin, D. A. Valverde-Chavez, C. Quarti. Phonon coherences reveal the polaronic character of excitons in two-dimensional lead halide perovskites. Nat. Mater., 18, 349-354(2019).

    [46] J. Fu, M. Li, A. Solanki. Electronic states modulation by coherent optical phonons in 2D halide perovskites. Adv. Mater., 33, 2006233(2021).

    [47] L. N. Quan, Y. Zhao, G. D. Pelayo. Tailoring the energy landscape in quasi-2D halide perovskites enables efficient green-light emission. Nano Lett., 17, 3701-3709(2017).

    [48] R. Long, L. Jin, O. V. Prezhdo. Unravelling the effects of grain boundary and chemical doping on electron-hole recombination in CH3NH3PbI3 perovskite by time-domain atomistic simulation. J. Am. Chem. Soc., 138, 3884-3890(2016).

    [49] S. Martin, P. Samuel, G. Feliciano. Carrier lifetimes and polaronic mass enhancement in the hybrid halide perovskite CH3NH3PbI3 from multiphonon Fröhlich coupling. Phys. Rev. Lett., 121, 086402(2018).

    [50] D. Zhao, H. Hu, R. Haselsberger. Monitoring electron-phonon interactions in lead halide perovskites using time-resolved THz spectroscopy. ACS Nano, 13, 8826-8835(2019).

    [51] H. Zhu, K. Miyata, Y. Fu. Screening in crystalline liquids protects energetic carriers in hybrid perovskites. Science, 353, 1409-1413(2016).

    [52] K. Miyata, D. Meggiolaro, M. T. Tuan. Large polarons in lead halide perovskites. Sci. Adv., 3, e1701217(2017).

    [53] Z. Guo, Y. Zhang, B. Wang. Promoting energy transfer via manipulation of crystallization kinetics of quasi-2D perovskites for efficient green light-emitting diodes. Adv. Mater., 33, 2102246(2021).

    [54] C. Wang, G. Dai, J. Wang. Low-threshold blue quasi-2D perovskite laser through domain distribution control. Nano Lett., 22, 1338-1344(2022).

    [55] X. Zhang, J. X. Shen, C. G. Van de Walle. Anomalous Auger recombination in PbSe. Phys. Rev. Lett., 125, 037401(2020).

    [56] V. I. Klimov, A. A. Mikhailovsky, D. W. McBranch. Quantization of multiparticle Auger rates in semiconductor quantum dots. Science, 287, 1011-1013(2000).

    [57] Y. Li, T. Ding, X. Luo. Biexciton Auger recombination in mono-dispersed, quantum-confined CsPbBr3 perovskite nanocrystals obeys universal volume-scaling. Nano Res., 12, 619-623(2019).

    [58] Y. Li, X. Luo, T. Ding. Size and halide dependent Auger recombination in lead halide perovskite nanocrystals. Angew. Chem. Int. Ed., 59, 14292-14295(2020).

    [59] A. Hangleiter, R. Häcker. Enhancement of band-to-band Auger recombination by electron-hole correlations. Phys. Rev. Lett., 65, 215-218(1990).

    Minghuan Cui, Chaochao Qin, Yuanzhi Jiang, Shichen Zhang, Changjiu Sun, Mingjian Yuan, Yonggang Yang, Yufang Liu. Tuning exciton dynamics by the dielectric confinement effect in quasi-two-dimensional perovskites[J]. Photonics Research, 2024, 12(3): 563
    Download Citation