• Infrared and Laser Engineering
  • Vol. 48, Issue 1, 120004 (2019)
Jiang Haitao1、2、*, Liu Shibin1, and Yuan Qianqian2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3788/irla201948.0120004 Cite this Article
    Jiang Haitao, Liu Shibin, Yuan Qianqian. Synergistic effect of hybrid nanodiamond/ZnO nanowires for improved ultraviolet photoresponse[J]. Infrared and Laser Engineering, 2019, 48(1): 120004 Copy Citation Text show less
    References

    [1] Patel M, Kim H, Kim J. All transparent metal oxide ultraviolet photodetector[J]. Advanced Electronic Materials, 2016, 1(11): 1500232.

    [2] Zhai T, Fang X, Liao M, et al. A comprehensive review of one-dimensional metal-oxide nanostructure photodetectors[J]. Sensors, 2009, 9(8): 6504.

    [3] Wang C, Yin L, Zhang L, et al. Metal oxide gas sensors: sensitivity and influencing factors[J]. Sensors, 2010, 10(3): 2088.

    [4] Liao X, Yan X, Lin P, et al. Enhanced performance of ZnO piezotronic pressure sensor through electron-tunneling modulation of MgO nanolayer[J]. Acs Appl Mater Interfaces, 2015, 7(3): 1602-1607.

    [5] Fulati A, Ali S M U, Riaz M, et al. Miniaturized pH sensors based on zinc oxide nano-tubes/nanorods[J]. Sensors, 2009, 9(11): 8911-8923.

    [6] Wan Q, Li Q H, Chen Y J, et al. Positive temperature coefficient resistance and humidity sens-ing properties of Cd-doped ZnO nanowires[J]. Applied Physics Letters, 2004, 84(16): 3085-3087.

    [7] Minami T. Transparent conducting oxide semiconductors for transparent electrodes[J]. Semi-conductor Science Technology, 2005, 20(4): S35.

    [8] Lang X, Hirata A, Fujita T, et al. Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors[J]. Nature Nanotechnology, 2011, 6(4): 232.

    [9] Zhan Z Y, Xu C Y, Zhen L, et al. Large-scale synthesis of single-crystalline KNbO nanobelts via a simple molten salt method[J]. Ceramics International, 2010, 36(2): 679-682.

    [10] Zhan Z, An J, Zhang H, et al. Three-dimensional plasmonic photoanodes based on Au-embedded TiO2 structures for enhanced visible-light water splitting[J]. Acs Appl Mater Inter-Faces, 2014, 6(2): 1139-1144.

    [11] Kim K, Kim G, Lee B R, et al. High-resolution electro hydrodynamic jet printing of small-molecule organic light-emitting diodes[J]. Nanoscale, 2015, 7(32):13410.

    [12] Kim S Y, Kim K, Hwang Y H, et al. High-resolution electro hydrodynamic inkjet printing of stretchable metal oxide semiconductor transistors with high performance[J]. Nanoscale, 2016, 39(8): 17113-17121.

    [13] Kim M, Park J, Ji S, et al. Fully-integrated, bezel-less transistor arrays using reversibly foldable interconnects and stretchable origami substrates[J]. Nanoscale, 2016, 8(18):9504-9510.

    [14] Chen H, Liu H, Zhang Z, et al. Nanostructured photodetectors: from ultraviolet to terahertz[J]. Advanced Materials, 2016, 28(3): 403.

    [15] Tran V T, Wei Y, Yang H, et al. All-inkjet-printed flexible ZnO micro photodetector for a wearable UV monitoring device[J]. Nanotechnology, 2017, 28(9): 095204.

    [16] Zhan Z, An J, Wei Y, et al. Inkjet-printed optoelectronics[J]. Nanoscale, 2016, 9(3): 965-993.

    [17] Teng F, Zheng L, Hu K, et al. Surface oxide thin layer of copper nanowires enhanced UV selective response of ZnO film photodetector[J]. Journal of Materials Chemistry C, 2016, 4(36): 02901A.

    [18] Chen M, Hu L, Xu J, et al. ZnO hollow-sphere nanofilm-based high-performance and low-cost photodetector[J]. Small, 2011, 7(17): 2449-2453.

    [19] Galloro J, Ginzburg M, Míguez H, et al. Replicating the structure of a cross linked polyferrocenylsilane inverse opal in the form of a magnetic ceramic[J]. Advanced Functional Materials, 2002, 12(5): 382-388.

    [20] Retamal J R D, Chen C Y, Lien D H, et al. Concurrent improvement in photogain and speed of a metal oxide nanowire photodetector through enhancing surface band bending via incorporating a nanoscale heterojunction[J]. Acs Photonics, 2014, 1(4): 354-359.

    [21] Liu X, Gu L, Zhang Q, et al. All-printable band-edge modulated ZnO nanowire photodetectors with ultra-high detectivity[J]. Nature Communications, 2014, 5(4007): 4007.

    [22] Nasiri N, Bo R, Chen H, et al. Structural engineering of nano-grain boundaries for low-voltage UV-photodetectors with gigantic photo-to dark-current ratios [J]. Advanced Optical Materials, 2016, 4(11): 1787-1795.

    [23] Monroy E, Omnès F, Calle F. Wide-bandgap semiconductor ultraviolet photodetectors[J]. Semiconductor Science & Technology, 2003, 18(4): R33.

    [24] Fang X, Bando Y, Liao M, et al. Ultraviolet sensors: an efficient way to assemble ZnS nanobelts as ultraviolet-light sensors with enhanced photocurrent and stability[J]. Advanced Functional Materials, 2010, 20(3): 500-508.

    [25] Ding L, Liu N, Li L, et al. Graphene-skeleton heat-coordinated and nanoamorphous-surface-state controlled pseudo-negative-photoconductivity of tiny SnO2 nano-particles[J]. Advanced Materials, 2015, 27(23): 3525-3532.

    [26] Li X, Gao C, Duan H, et al. High-performance photoelectrochemical-type self-powered UV photodetector using epitaxial TiO2/SnO2 branched heterojunction nanostructure[J]. Small, 2013, 9(11): 2005.

    [27] Xie Y, Wei L, Wei G, et al. A self-powered UV photodetector based on TiO2 nanorod arrays[J]. Nanoscale Research Letters, 2013, 8(1): 1-6.

    [28] Fang X, Hu L, Huo K, et al. New ultraviolet photodetector based on individual Nb2O5 nanobelts[J]. Advanced Functional Materials, 2011, 21(20): 3907-3915.

    [29] Liu H, Zhang Z, Hu L, et al. New UV-A photodetector based on individual potassium niobate nanowires with high performance[J]. Advanced Optical Materials, 2015, 2(8): 771-778.

    [30] Zhou J, Gu Y, Hu Y, et al. Gigantic enhancement in response and reset time of ZnO UV nanosensor by utilizing Schottky contact and surface functionalization[J]. Applied Physics Letters, 2009, 94(19): 191103.

    [31] Cheng G, Wu X, Liu B, et al. ZnO nanowire Schottky barrier ultraviolet photodetector with high sensitivity and fast recovery speed[J]. Applied Physics Letters, 2011, 99(20): 203105.

    [32] Lu J, Xu C, Dai J, et al. Improved UV photoresponse of ZnO nanorod arrays by resonant coupling with surface plasmons of Al nanoparticles[J]. Nanoscale, 2015, 7(8):3396-3403.

    [33] Fu X W, Liao Z M, Xu J, et al. Improvement of ultraviolet photoresponse of bent ZnO microwires by coupling piezoelectric and surface oxygen adsorption/desorption effects.[J]. Nanoscale, 2013, 5(3): 916-920.

    [34] He P, Feng S, Liu S, et al. Ultrafast UV response detectors based on multi-channel ZnO nan-owire networks[J]. Rsc Advances, 2015, 5(127): 105288-105291.

    [35] Liu J, Lu R, Xu G, et al. Development of a seedless floating growth process in solution for synthesis of crystalline ZnO micro/nanowire arrays on graphene: towards high-performance nanohybrid ultraviolet photodetectors[J]. Advanced Functional Materials, 2013, 23(39): 4941-4948.

    [36] Zhan Z, An J, Zhang H, et al. Three-dimensional plasmonic photoanodes based on Au-embedded TiO2 structures for enhanced visible-light water splitting[J]. Acs Appl Mater Interfaces, 2014, 6(2): 1139-1144.

    [37] Liu K, Sakurai M, Liao M, et al. Giant improvement of the performance of ZnO nanowire photodetectors by Au nanoparticles [J]. Journal of Physical Chemistry C, 2010, 114(114): 19835-19839.

    [38] Zhan Z, Liu L, Wang W, et al. Ultrahigh surface-enhanced raman scattering of graphene from Au/Graphene/Au sandwiched structures with subnanometer gap[J]. Advanced Optical Materials, 2016, 4(12): 2021-2027.

    [39] Nasiri N, Bo R, Fu L, et al. Three-dimensional nano-heterojunction networks: a highly per-forming structure for fast visible-blind UV photodetectors[J]. Nanoscale, 2017, 9(5): 2059.

    [40] Chen C Y, Chen M W, Hsu C Y, et al. Enhanced recovery speed of nanostructured ZnO photodetectors using nanobelt networks[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2012, 18(6): 1807-1811.

    [41] Zheng Q, Huang J, Yang H, et al. A high-performance nanobridged MoO3 UV photodetector based on nanojunctions with switching characteristics[J]. Nanotechnology, 2017, 28(4): 045202.

    [42] Huang M H, Wu Y, Feick H, et al. Catalytic growth of zinc oxide nanowires by vapor transport[J]. Advanced Materials, 2001, 13(2): 113-116.

    [43] Sankaran K J, Kalpataru P, Balakrishnan S, et al. Catalytically induced nanographitic phase by a plati-num-ion implantation/annealing process to improve the field electron emission properties of ultrananocrystalline diamond films[J]. J Mater Chem C, 2015, 3(11): 2632-2641.

    [44] Lin Z, Xiao J, Li L, et al. Nanodiamond-embedded p-type copper (I) oxide nanocrystals for broad-spectrum photocatalytic hydrogen evolution[J]. Adv Energy Mater, 2016, 6: 1501865.

    [45] Xiao J, Liu P, Li L, et al. Fluorescence origin of nanodiamonds[J]. J Phys Chem C, 2015, 119(4): 2239-2248.

    [46] Zhou X, Gan L, Tian W, et al. Ultrathin SnSe2 flakes grown by chemical vapor deposition for high-performance photodetectors[J]. Adv Mater, 2015, 27(48): 8035-8041.

    [47] Hu X, Zhang X, Liang L, Bao J, et al. High-performance flexible broadband photodetector based on organo lead halide perovskite[J]. Adv Funct Mater, 2014, 24 (46): 7373-7380.

    [48] Island J O, Blanter S I, Buscema M, et al. Gate controlled photocurrent generation mechanisms in high-gain In2Se3 phototransistors[J]. Nano Letters, 2015, 15(12): 7853-7858.

    Jiang Haitao, Liu Shibin, Yuan Qianqian. Synergistic effect of hybrid nanodiamond/ZnO nanowires for improved ultraviolet photoresponse[J]. Infrared and Laser Engineering, 2019, 48(1): 120004
    Download Citation