[2] M. Picard, O S. Shirihai. Mitochondrial signal transduction. Cell Metab., 34, 1620(2022).
[4] D. M. Pegtel, S. J. Gould. Exosomes. Annu. Rev. Biochem., 88, 487(2019).
[12] H. Blom, J. Widengren. Stimulated emission depletion microscopy. Chem. Rev., 117, 7377(2017).
[22] L. Zhu et al. Faster STORM using compressed sensing. Nat. Methods, 9, 721(2012).
[26] M. Weber et al. MINSTED fluorescence localization and nanoscopy. Nat. Photonics, 15, 361(2021).
[48] C. Eggeling et al. Lens-based fluorescence nanoscopy. Q. Rev. Biophys., 48, 178(2015).
[53] E. Hesper Rego et al. Nonlinear structured-illumination microscopy with a photoswitchable protein reveals cellular structures at 50-nm resolution. Proc. Natl. Acad. Sci. U.S.A., 109, 661(2012).
[55] L. A. Masullo et al. Pulsed interleaved MINFLUX. Nano Lett., 21, 840(2020).
[61] L. M. Ostersehlt et al. DNA-PAINT MINFLUX nanoscopy. Nat. Methods, 19, 1072(2022).
[62] K. Zhao et al. Two-photon MINFLUX with doubled localization precision. eLight, 2, 5(2022).
[66] H. Wu et al. Localizing axial dense emitters based on single-helix point spread function and deep learning(2024).
[92] G. Donnert et al. Two-color far-field fluorescence nanoscopy. Biophys. J., 92, L67(2007).
[93] R. Schmidt et al. Mitochondrial cristae revealed with focused light. Nano Lett., 9, 2508(2009).
[96] N. Mizushima, M. Komatsu. Autophagy: renovation of cells and tissues. Cell, 147, 728(2011).
[115] Y. Okada, S. Nakagawa. Super-resolution imaging of nuclear bodies by STED microscopy. Super-Resolution Imaging of Nuclear Bodies by STED Microscopy, 1262, 21(2015).
[138] S. C. M. Reinhardt et al. Ångström-resolution fluorescence microscopy. Nature, 617, 711(2023).