• Advanced Imaging
  • Vol. 1, Issue 3, 032001 (2024)
Hongjun Wu1,2,3, Yalan Zhao1,2,3, Xiao Zhou1,2,3, Tianxiao Wu1,2,3..., Jiaming Qian1,2,3, Shijia Wu1,2,3, Yongtao Liu1,2,3,* and Chao Zuo1,2,3,*|Show fewer author(s)
Author Affiliations
  • 1Smart Computational Imaging Laboratory (SCILab), School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing, China
  • 2Smart Computational Imaging Research Institute (SCIRI) of Nanjing University of Science and Technology, Nanjing, China
  • 3Jiangsu Key Laboratory of Spectral Imaging & Intelligent Sense, Nanjing, China
  • show less
    DOI: 10.3788/AI.2024.20004 Cite this Article Set citation alerts
    Hongjun Wu, Yalan Zhao, Xiao Zhou, Tianxiao Wu, Jiaming Qian, Shijia Wu, Yongtao Liu, Chao Zuo, "Super-resolution microscopy reveals new insights into organelle interactions," Adv. Imaging 1, 032001 (2024) Copy Citation Text show less
    References

    [1] A. Calcinotto et al. Cellular senescence: aging, cancer, and injury. Physiol. Rev., 99, 1047(2019).

    [2] M. Picard, O S. Shirihai. Mitochondrial signal transduction. Cell Metab., 34, 1620(2022).

    [3] D. B. Zorov, M. Juhaszova, S. J. Sollott. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol. Rev., 94, 909(2014).

    [4] D. M. Pegtel, S. J. Gould. Exosomes. Annu. Rev. Biochem., 88, 487(2019).

    [5] I. Rodriguez-Hernandez et al. WNT11-FZD7-DAAM1 signalling supports tumour initiating abilities and melanoma amoeboid invasion. Nat. Commun., 11, 5315(2020).

    [6] Y. Cheng et al. Targeting CXCR2 inhibits the progression of lung cancer and promotes therapeutic effect of cisplatin. Mol. Cancer, 20, 62(2021).

    [7] D. Bhattacharya, O. Oresajo, A. Scimè. p107 mediated mitochondrial function controls muscle stem cell proliferative fates. Nat. Commun., 12, 5977(2021).

    [8] R. Han et al. Recent advances in super-resolution fluorescence imaging and its applications in biology. J. Genet. Genomics, 40, 583(2013).

    [9] M. J. Rust, M. Bates, X. Zhuang. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat. Methods, 3, 793(2006).

    [10] J. Xu, K. F. Tehrani, P. Kner. Multicolor 3D super-resolution imaging by quantum dot stochastic optical reconstruction microscopy. ACS Nano, 9, 2917(2015).

    [11] M. Bates et al. Optimal precision and accuracy in 4Pi-STORM using dynamic spline PSF models. Nat. Methods, 19, 603(2022).

    [12] H. Blom, J. Widengren. Stimulated emission depletion microscopy. Chem. Rev., 117, 7377(2017).

    [13] P. N. Hedde et al. Stimulated emission depletion-based raster image correlation spectroscopy reveals biomolecular dynamics in live cells. Nat. Commun., 4, 2093(2013).

    [14] D. Li et al. Extended-resolution structured illumination imaging of endocytic and cytoskeletal dynamics. Science, 349, 3500(2015).

    [15] M. G. L. Gustafsson et al. Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination. Biophys. J., 94, 4957(2008).

    [16] F. Balzarotti et al. Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes. Science, 355, 606(2017).

    [17] R. Schmidt et al. MINFLUX nanometer-scale 3D imaging and microsecond-range tracking on a common fluorescence microscope. Nat. Commun., 12, 1478(2021).

    [18] J. K. Pape et al. Multicolor 3D MINFLUX nanoscopy of mitochondrial MICOS proteins. Proc. Natl. Acad. Sci. U.S.A., 117, 20607(2020).

    [19] E. Betzig et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science, 313, 1642(2006).

    [20] M. Heilemann et al. Subdiffraction resolution fluorescence imaging with conventional fluorescent probes. Angewandte Chemie, 47, 6172(2008).

    [21] B. Huang et al. Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy. Science, 319, 810(2008).

    [22] L. Zhu et al. Faster STORM using compressed sensing. Nat. Methods, 9, 721(2012).

    [23] S. A. Jones et al. Fast, three-dimensional super-resolution imaging of live cells. Nat. Methods, 8, 499(2011).

    [24] W. Ouyang et al. Deep learning massively accelerates super-resolution localization microscopy. Nat. Biotechnol., 36, 460(2018).

    [25] A. Ghosh et al. Graphene- and metal-induced energy transfer for single-molecule imaging and live-cell nanoscopy with (sub)-nanometer axial resolution. Nat. Protoc., 16, 3695(2021).

    [26] M. Weber et al. MINSTED fluorescence localization and nanoscopy. Nat. Photonics, 15, 361(2021).

    [27] J. Zhang et al. Low-power two-color stimulated emission depletion microscopy for live cell imaging. Biosensors, 11, 330(2021).

    [28] Y. Liu et al. Population control of upconversion energy transfer for stimulation emission depletion nanoscopy. Adv. Sci., 10, 2205990(2023).

    [29] A. Benda et al. STED imaging of tau filaments in Alzheimer’s disease cortical grey matter. J. Struct. Biol., 195, 345(2016).

    [30] T. J. Gould et al. Adaptive optics enables 3D STED microscopy in aberrating specimens. Opt. Express, 20, 20998(2012).

    [31] P. Zdankowski et al. Numerically enhanced stimulated emission depletion microscopy with adaptive optics for deep-tissue super-resolved imaging. ACS Nano, 14, 394(2019).

    [32] L. Wang et al. Low-power STED nanoscopy based on temporal and spatial modulation. Nano Res., 15, 3479(2022).

    [33] B. R. Patton et al. Three-dimensional STED microscopy of aberrating tissue using dual adaptive optics. Opt. Express, 24, 8862(2016).

    [34] P. Gao et al. Background suppression in fluorescence nanoscopy with stimulated emission double depletion. Nat. Photonics, 11, 163(2017).

    [35] C. Kuang et al. Breaking the diffraction barrier using fluorescence emission difference microscopy. Sci. Rep., 3, 1441(2013).

    [36] Y. Liu et al. Super-resolution mapping of single nanoparticles inside tumor spheroids. Small, 16, e1905572(2020).

    [37] Y. Liu et al. On-chip mirror enhanced multiphoton upconversion super-resolution microscopy. Nano Lett., 23, 5514(2023).

    [38] C. Chen et al. Multi-photon near-infrared emission saturation nanoscopy using upconversion nanoparticles. Nat. Commun., 9, 3290(2018).

    [39] J. Wang et al. Improving the image quality in STED nanoscopy using frequency spectrum modulation. J. Biophotonics, 14, e202000402(2021).

    [40] W. I. Zhang et al. Fluorescent in situ hybridization of synaptic proteins imaged with super-resolution STED microscopy. Microsc. Res. Tech., 77, 517(2014).

    [41] J. G. Schloetel et al. Guided STED nanoscopy enables super-resolution imaging of blood stage malaria parasites. Sci. Rep., 9, 4674(2019).

    [42] L. Wang et al. Ultralow power demand in fluorescence nanoscopy with digitally enhanced stimulated emission depletion. Nanophotonics, 9, 831(2020).

    [43] R. Fukaya et al. Increased vesicle fusion competence underlies long-term potentiation at hippocampal mossy fiber synapses. Sci. Adv., 9, 3616(2023).

    [44] M. G. M. Velasco et al. 3D super-resolution deep-tissue imaging in living mice. Optica, 8, 442(2021).

    [45] L. Finzel, M. Reuss. A stimulated emission depletion (STED) microscope of all trades. IMicroscopy Today, 30, 26(2022).

    [46] J. Bucevičius et al. A general highly efficient synthesis of biocompatible rhodamine dyes and probes for live-cell multicolor nanoscopy. Nat. Commun., 14, 1306(2023).

    [47] M. G. L. Gustafsson. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. J. Microsc., 198, 82(2000).

    [48] C. Eggeling et al. Lens-based fluorescence nanoscopy. Q. Rev. Biophys., 48, 178(2015).

    [49] L. Shao et al. Super-resolution 3D microscopy of live whole cells using structured illumination. Nat. Methods, 8, 1044(2011).

    [50] P. Kner et al. Super-resolution video microscopy of live cells by structured illumination. Nat. Methods, 6, 339(2009).

    [51] X. Huang et al. Fast, long-term, super-resolution imaging with Hessian structured illumination microscopy. Nat. Biotechnol., 36, 451(2018).

    [52] Mgl Gustafsson. Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution. Proc. Natl. Acad. Sci. U.S.A., 102, 13081(2005).

    [53] E. Hesper Rego et al. Nonlinear structured-illumination microscopy with a photoswitchable protein reveals cellular structures at 50-nm resolution. Proc. Natl. Acad. Sci. U.S.A., 109, 661(2012).

    [54] L. Shao et al. I5S: wide-field light microscopy with 100-nm-scale resolution in three dimensions. Biophys J., 94, 4971(2008).

    [55] L. A. Masullo et al. Pulsed interleaved MINFLUX. Nano Lett., 21, 840(2020).

    [56] T. Schlichthaerle, C. Lindner, R. Jungmann. Super-resolved visualization of single DNA-based tension sensors in cell adhesion. Nat. Commun., 12, 2510(2021).

    [57] D. J. Williamson et al. Multi-color molecular visualization of signaling proteins reveals how c-terminal Src kinase nanoclusters regulate T cell receptor activation. Cell Rep., 33, 108523(2020).

    [58] C. Niederauer et al. Dual-color DNA-paint single-particle tracking enables extended studies of membrane protein interactions. Nat. Commun., 14, 4345(2023).

    [59] J. Zähringer et al. Combining pMINFLUX, graphene energy transfer and DNA-PAINT for nanometer precise 3D super-resolution microscopy. Light Sci. Appl., 12, 70(2023).

    [60] L. A. Masullo et al. An alternative to MINFLUX that enables nanometer resolution in a confocal microscope. Light Sci. Appl., 11, 199(2022).

    [61] L. M. Ostersehlt et al. DNA-PAINT MINFLUX nanoscopy. Nat. Methods, 19, 1072(2022).

    [62] K. Zhao et al. Two-photon MINFLUX with doubled localization precision. eLight, 2, 5(2022).

    [63] A. J. Graham, M. T. Robinson, A. Z. Maleki. Rapid on-site evaluation (ROSE) of image-guided FNA specimens improves subsequent core biopsy adequacy in clinical trial patients: The impact of preanalytical factors and its correlation with survival. Cancer Cytopathol., 132, 30(2024).

    [64] V. Ebrahimi et al. Deep learning enables fast, gentle STED microscopy. Commun. Biol., 6, 674(2023).

    [65] X. Chen et al. Gated-GAN: adversarial gated networks for multi-collection style transfer. IEEE Trans. Image Process., 28, 546(2018).

    [66] H. Wu et al. Localizing axial dense emitters based on single-helix point spread function and deep learning(2024).

    [67] E. Nehme et al. Deep-storm: super-resolution single-molecule microscopy by deep learning. Optica, 5, 458(2018).

    [68] J. Li et al. Spatial and temporal super-resolution for fluorescence microscopy by a recurrent neural network. Opt. Express, 29, 15747(2021).

    [69] A. Speiser et al. Deep learning enables fast and dense single-molecule localization with high accuracy. Nat. Methods, 18, 1082(2021).

    [70] Z. H. Shah et al. Deep-learning based denoising and reconstruction of super-resolution structured illumination microscopy images. Photonics Res., 9, B168(2021).

    [71] Y. Chen et al. Deep learning enables contrast-robust super-resolution reconstruction in structured illumination microscopy. Opt. Express, 32, 3316(2024).

    [72] M. A. Boland et al. Improving axial resolution in structured illumination microscopy using deep learning. Philos. Trans. R. Soc. A, 379, 20200298(2021).

    [73] S. M. Davidson et al. Direct evidence for cancer-cell-autonomous extracellular protein catabolism in pancreatic tumors. Nat. Med., 23, 235(2016).

    [74] S. Zhu et al. Lysosomal quality control of cell fate: a novel therapeutic target for human diseases. Cell Death Dis., 11, 817(2020).

    [75] L. Xu et al. Downregulation of α-L-fucosidase 1 suppresses glioma progression by enhancing autophagy and inhibiting macrophage infiltration. Cancer Sci., 111, 2284(2020).

    [76] H. Kim et al. Structural basis for mitoguardin-2 mediated lipid transport at ER-mitochondrial membrane contact sites. Nat. Commun., 13, 3702(2022).

    [77] A. Paden King, J. J. Wilson. Endoplasmic reticulum stress: an arising target for metal-based anticancer agents. Nat. Commun., 49, 8113(2022).

    [78] J. Wang, Y. Wang, W. Liang. Delivery of drugs to cell membranes by encapsulation in PEG-PE micelles. J. Control Release, 160, 637(2012).

    [79] S. Pollock et al. Uptake and trafficking of liposomes to the endoplasmic reticulum. FASEB J., 24, 1866(2010).

    [80] T. Wang et al. Cellular uptake of nanoparticles by membrane penetration: a study combining confocal microscopy with FTIR spectroelectrochemistry. ACS Nano, 6, 1251(2012).

    [81] R. Y. Yu et al. Regulating Golgi apparatus by co-delivery of COX-2 inhibitor and brefeldin a for suppression of tumor metastasis. Biomater. Sci., 6, 2144(2018).

    [82] M. Misuth et al. The flashlights on a distinct role of protein kinase C: phosphorylation of regulatory and catalytic domain upon oxidative stress in glioma cells. Cell. Signal., 34, 11(2017).

    [83] C. M. Deus et al. Mitochondria-lysosome crosstalk: from physiology to neurodegeneration. Trends Mol. Med., 26, 71(2020).

    [84] N. Dahan et al. Peroxisome function relies on organelle-associated mRNA translation. Sci. Adv., 8, eabk2141(2022).

    [85] N. Mizushima et al. Autophagy fights disease through cellular self-digestion. Nature, 451, 1069(2008).

    [86] D. D. Newmeyer, S. Ferguson-Miller. Mitochondria: releasing power for life and unleashing the machineries of death. Cell, 112, 481(2003).

    [87] E. Betzig et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science, 313, 1642(2006).

    [88] C. Wang et al. Dynamic tubulation of mitochondria drives mitochondrial network formation. Cell Res., 25, 1108(2015).

    [89] J. Qin et al. ER-mitochondria contacts promote mtDNA nucleoids active transportation via mitochondrial dynamic tabulation. Nat. Commun., 11, 4471(2020).

    [90] B. Chen et al. STORM imaging of mitochondrial dynamics using a vicinal-dithiol-proteins-targeted probe. Biomaterials, 243, 119938(2020).

    [91] C. A. Wurm et al. Nanoscale distribution of mitochondrial import receptor Tom20 is adjusted to cellular conditions and exhibits an inner-cellular gradient. Proc. Natl. Acad. Sci. U.S.A., 108, 13546(2021).

    [92] G. Donnert et al. Two-color far-field fluorescence nanoscopy. Biophys. J., 92, L67(2007).

    [93] R. Schmidt et al. Mitochondrial cristae revealed with focused light. Nano Lett., 9, 2508(2009).

    [94] H. Fang, J. Diao. De Novo-designed near-infrared nano-aggregates for the superresolution monitoring of lysosomes in cells, in whole organoids, and in vivo. Biophys. J., 118, 2656(2020).

    [95] Y. C. Wong, W. Peng, D. Krainc. Lysosomal regulation of inter-mitochondrial contact fate and motility in Charcot-Marie-Tooth type 2. Dev. Cell, 50, 339(2019).

    [96] N. Mizushima, M. Komatsu. Autophagy: renovation of cells and tissues. Cell, 147, 728(2011).

    [97] D. Lumkwana, L. Engelbrecht, B. Loos. Monitoring autophagy using super-resolution structured illumination and direct stochastic optical reconstruction microscopy. Methods Cell Biol., 165, 139(2021).

    [98] J. Sheng et al. Inhibition of PI3K/mTOR increased the sensitivity of hepatocellular carcinoma cells to cisplatin via interference with mitochondrial-lysosomal crosstalk. Cell Prolif., 52, 12609(2019).

    [99] Y. Han et al. Cell-permeable organic fluorescent probes for live-cell long-term super-resolution imaging reveal lysosome-mitochondrion interactions. Nat. Commun., 8, 1307(2017).

    [100] D. Valdinocci et al. Alpha-synuclein aggregates associated with mitochondria in tunnelling nanotubes. Neurotoxic. Res., 39, 429(2021).

    [101] W. Peng, Y. C. Wong, D. Krainc. Mitochondria-lysosome contacts regulate mitochondrial Ca2+ dynamics via lysosomal TRPML1. Proc. Natl. Acad. Sci. U S A, 117, 19266(2020).

    [102] V. Allan. Intertwined and finely balanced: endoplasmic reticulum morphology, dynamics, function, and diseases. Cells, 10, 2341(2021).

    [103] X. Chen, J. R. Cubillos-Ruiz. Endoplasmic reticulum stress signals in the tumour and its microenvironment. Nat. Rev. Cancer, 21, 71(2020).

    [104] L. K. Schroeder et al. Dynamic nanoscale morphology of the ER surveyed by STED microscopy. J. Cell Biol., 218, 83(2019).

    [105] H. Man et al. Hybrid labeling system for dSTORM imaging of endoplasmic reticulum for uncovering ultrastructural transformations under stress conditions. Biosens. Bioelectron., 189, 113378(2021).

    [106] S. Rodriguez-Gallardo et al. Assay for dual cargo sorting into endoplasmic reticulum exit sites imaged by 3D super-resolution confocal live imaging microscopy (SCLIM). PloS One, 16, e0258111(2021).

    [107] A. Filipe et al. Defective endoplasmic reticulum-mitochondria contacts and bioenergetics in SEPN1-related myopathy. Cell Death Differ., 28, 123(2020).

    [108] M. Boutry, P. K. Kim. ORP1L mediated PI(4)P signaling at ER-lysosome-mitochondrion three-way contact contributes to mitochondrial division. Nat. Commun., 12, 5354(2021).

    [109] Y. Guo et al. Visualizing intracellular organelle and cytoskeletal interactions at nanoscale resolution on millisecond timescales. Cell, 175, 1430(2018).

    [110] M. Damenti et al. STED and parallelized RESOLFT optical nanoscopy of the tubular endoplasmic reticulum and its mitochondrial contacts in neuronal cells. Neurobiol Dis., 155, 105361(2021).

    [111] B. Gottschalk et al. Intracellular Ca2+ release decelerates mitochondrial cristae dynamics within the junctions to the endoplasmic reticulum. Pfluegers Arch., 470, 1193(2018).

    [112] J. Ma, A. Goryaynov, W. Yang. Super-resolution 3D tomography of interactions and competition in the nuclear pore complex. Nat. Struct. Mol. Biol., 23, 239(2016).

    [113] K. C. Gwosch et al. MINFLUX nanoscopy delivers 3D multicolor nanometer resolution in cells. Nat. Methods, 17, 217(2020).

    [114] Y. Eilers et al. MINFLUX monitors rapid molecular jumps with superior spatiotemporal resolution. Proc. Natl. Acad. Sci. U S A, 115, 6117(2018).

    [115] Y. Okada, S. Nakagawa. Super-resolution imaging of nuclear bodies by STED microscopy. Super-Resolution Imaging of Nuclear Bodies by STED Microscopy, 1262, 21(2015).

    [116] C. Cremer et al. Super-resolution microscopy approaches to nuclear nanostructure imaging. Methods, 123, 11(2017).

    [117] M. Eisenberg-Bord et al. Cnm1 mediates nucleus–mitochondria contact site formation in response to phospholipid levels. J. Cell Biol., 220, e202104100(2021).

    [118] J. Ramadani-Muja et al. Visualization of Sirtuin 4 distribution between mitochondria and the nucleus, based on bimolecular fluorescence self-complementation. Cells, 8, 1583(2019).

    [119] R. Desai et al. Mitochondria form contact sites with the nucleus to couple pro-survival retrograde response. Sci. Adv., 6, eabc9955(2020).

    [120] Y. Xu et al. Aggregation-induced emission (AIE) in super-resolution imaging: cationic AIE luminogens (AIEgens) for tunable organelle-specific imaging and dynamic tracking in nanometer scale. ACS Nano, 16, 1583(2022).

    [121] R. S. Erdmann et al. Super-resolution imaging of the Golgi in live cells with a bioorthogonal ceramide probe. Angewandte Chemie, 53, 10242(2014).

    [122] K. Kurokawa et al. Visualization of secretory cargo transport within the Golgi apparatus. J Cell Biol., 218, 1602(2019).

    [123] Y. Shimizu et al. Cargo sorting zones in the trans-Golgi network visualized by super-resolution confocal live imaging microscopy in plants. Nat. Commun., 12, 1901(2021).

    [124] Y. Zhang et al. Nanoscale subcellular architecture revealed by multicolor three-dimensional salvaged fluorescence imaging. Nat. Methods, 17, 225(2020).

    [125] R. Sikora et al. MICAL-L1 is required for cargo protein delivery to the cell surface. Biol. Open, 10, bio058008(2021).

    [126] C. Herrera, N. J. Mantis, R. Cole. Applications in stimulated emission depletion microscopy: localization of a protein toxin in the endoplasmic reticulum following retrograde transport. Microsc. Microanal., 22, 1113(2016).

    [127] T. S. Kim et al. Molecular architecture of a cylindrical self-assembly at human centrosomes. Nat. Commun., 10, 1151(2019).

    [128] T. T. Yang et al. Super-resolution architecture of mammalian centriole distal appendages reveals distinct blade and matrix functional components. Nat. Commun., 9, 2023(2018).

    [129] A. M. Sydor et al. PPP1R35 is a novel centrosomal protein that regulates centriole length in concert with the microcephaly protein RTTN. eLife, 7, e37846(2018).

    [130] M. Gao. Expansion microscopy opens the door to exploring more challenges. Nat. Methods, 12, 147(2022).

    [131] F. U. Zwettler et al. Molecular resolution imaging by post-labeling expansion single-molecule localization microscopy (Ex-SMLM). Nat. Commun., 11, 3388(2020).

    [132] J. A. Ruland et al. Nuclear export of the pre-60S ribosomal subunit through single nuclear pores observed in real time. Nat. Commun., 12, 6211(2021).

    [133] C. Deng et al. Impaired dynamic interaction of axonal endoplasmic reticulum and ribosomes contributes to defective stimulus-response in spinal muscular atrophy. Trans. Neurodegener., 11, 31(2022).

    [134] A. Maiser et al. Super-resolution in situ analysis of active ribosomal DNA chromatin organization in the nucleolus. Sci. Rep., 10, 7462(2020).

    [135] D. P. Hoffman et al. Correlative three-dimensional super-resolution and block-face electron microscopy of whole vitreously frozen cells. Science, 367, eaaz5357(2020).

    [136] A. Klimas et al. Magnify is a universal molecular anchoring strategy for expansion microscopy. Nat. Biotechnol., 41, 858(2023).

    [137] M. H. Laporte et al. Visualizing the native cellular organization by coupling cryofixation with expansion microscopy (Cryo-ExM). Nat. Methods, 19, 216(2022).

    [138] S. C. M. Reinhardt et al. Ångström-resolution fluorescence microscopy. Nature, 617, 711(2023).

    Hongjun Wu, Yalan Zhao, Xiao Zhou, Tianxiao Wu, Jiaming Qian, Shijia Wu, Yongtao Liu, Chao Zuo, "Super-resolution microscopy reveals new insights into organelle interactions," Adv. Imaging 1, 032001 (2024)
    Download Citation