• Acta Optica Sinica
  • Vol. 37, Issue 3, 323002 (2017)
Hu Jinfeng1、2、*, Liu Bin1、2, Liang Hongqin1、2, and Liu Juan1、2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3788/aos201737.0323002 Cite this Article Set citation alerts
    Hu Jinfeng, Liu Bin, Liang Hongqin, Liu Juan. Achieving Nonreciprocal Transmission by Breaking Symmetry of Nonlinear Fano Cavity Structure in Photonic Crystals[J]. Acta Optica Sinica, 2017, 37(3): 323002 Copy Citation Text show less
    References

    [1] Scalora M, Dowling J P, Bowden C M, et al. The photonic band edge optical diode[J]. Journal of Applied Physics, 1994, 76(4): 2023-2026.

    [2] Tocci M D, Bloemer M J, Scalora M, et al. Thin-film nonlinear optical diode[J]. Appl Phys Lett, 1995, 66(24): 2324-2326.

    [3] Feise M W, Shadrivov I V, Kivshar Y S. Bistable diode action in left-handed periodic structures[J]. Phys Rev E, 2005, 71: 037602.

    [4] Hu X Y, Chin X, Li Z Q, et al. Ultrahigh-contrast all-optical diodes based on tunable surface plasmon polaritons[J]. New Journal of Physics, 2010, 12(2): 023029.

    [5] Xue C H, Jiang H T, Chen H. Highly efficient all-optical diode action based on light-tunneling heterostructures[J]. Opt Express, 2010, 18(7): 7479-7487.

    [6] Khanikaev A B, Steel M J. Low-symmetry magnetic photonic crystals for nonreciprocal and unidirectional devices[J]. Opt Express, 2009, 17(7): 5265-5272.

    [7] Callo K, Assanto G. All-optical diode in a periodically poled lithium niobate waveguide[J]. Appl Phys Lett, 2001, 79(3): 314-316.

    [8] Philip R, Anija M, Yelleswarapu C S, et al. Passive all-optical diode using asymmetric nonlinear absorption[J]. Appl Phys Lett, 2007, 91(14): 141118.

    [9] Konorov S O, Biryukov D A S, Bugar I, et al. Experimental demonstration of a photonic-crystal-fiber optical diode[J]. Applied Physics B, 2004, 78(5): 547-550.

    [10] Hwang J, Song M H, Park B, et al. Electro-tunable optical diode based on photonic bandgap liquid crystal heterojunctions[J]. Nat Mater, 2005, 4(5): 383-387.

    [11] Song M H, Park B, Takanishi Y, et al. Simple electro-tunable optical diode using photonic and anisotropic liquid crystal films[J]. Thin Solid Films, 2006, 509(1-2): 49-52.

    [12] Yablonovitch E. Inhibited spontaneous emission in solid-state physics and electronics[J]. Phys Rev Lett, 1987, 58(20): 2059-2062.

    [13] John S. Strong localization of photons in certain disordered dielectric[J]. Phys Rev Lett, 1987, 58(23): 2486-2489.

    [14] Yang Qianqian, Hou Lantian. Octagonal photonic crystal fiber of birefringence[J]. Acta Phys Sin, 2009, 58(12): 8345-8351.

    [15] Russell P. Photonic crystal fibers[J]. Science, 2003, 299(5605): 358-362.

    [16] Lou Shuqin, Wang Zhi, Ren Guobin, et al. Polarization-maintaining photonic crystal fiber[J]. Chinese Physics B, 2004, 13(7): 1052-1058.

    [17] Li Shanshan, Hao Xia, Bai Jinjun, et al. Tunable terahertz single polarization single mode PCF[J]. Chinese J Lasers, 2016, 43(9): 0901005.

    [18] Shu Jing, Zhou Xingping. Two channels wavelength division multiplexing based on photonic crystals coupled-cavity waveguides[J]. Acta Photonica Sinica, 2014, 43(S1): 116002.

    [19] Zhou Xingping, Shu Jing. Novel 1×3 splitter based on photonic crystal self-collimation effect[J]. Acta Optica Sinica, 2013, 33(4): 0423002.

    [20] Lin Mi, Qiu Wenbiao, Xi Xiang, et al. Three-equal-power splitters for TE and TM waves with additional polarization-selection function based on two-dimensional photonic crystals[J]. Acta Optica Sinica, 2016, 36(12): 1223001.

    [21] Fan Qingbin, Li Chuanqi, Zhang Xiurong, et al. Design and numerical studies of annular line defect photonic crystal filter[J]. Laser & Optoelectronics Progress, 2015, 52(1): 012301.

    [22] Tan Chunhua, Huang Xuguang. An all-optical switch based on the tunable bandgap of a two-dimensional photonic crystal[J]. Acta Optica Sinica, 2010, 30(9): 2714-2718.

    [23] Fu Yunqi, Yuan Naichang, Wen Xisen. Microwave photonic crystals antenna technology[M]. Beijing: National Defence Industry Press, 2004: 14-176.

    [24] Zhao N S, Zhou H, Guo Q, et al. Design of highly efficient optical diodes based on the dynamics of nonlinear photonic crystal molecules[J]. Journal of the Optical Society of America B, 2006, 23(11): 2434-2440.

    [25] Lin X S, Wu W Q, Zhou H, et al. Enhancement of unidirectional transmission through the coupling of nonlinear photonic crystal defects[J]. Opt Express, 2006, 14(6): 2429-2439.

    [26] Zhou H, Zhou K F, Hu W, et al. All-optical diodes based on photonic crystal molecules consisting of nonlinear defect pairs[J]. Journal of Applied Physics, 2006, 99(12): 123111.

    [27] Fan S H, Suh W, Joannopoulos J D. Temporal coupled-mode theory for the Fano resonance in optical resonators[J]. Journal of the Optical Society of America A, 2003, 20(3): 569-572.

    [28] Heuck M, Kristensen P T, Elesin Y, et al. Improved switching using Fano resonances in photonic crystal structures[J]. Opt Lett, 2013, 38(14): 2466-2468.

    Hu Jinfeng, Liu Bin, Liang Hongqin, Liu Juan. Achieving Nonreciprocal Transmission by Breaking Symmetry of Nonlinear Fano Cavity Structure in Photonic Crystals[J]. Acta Optica Sinica, 2017, 37(3): 323002
    Download Citation